CS1800 Day 6

Admin: '
- HW 2 due Friday (logic)
- HW 3 released Friday (sets)
- When will we see HW1 graded? (or any HW for that matter)
- We will always get you HW back within 2 weeks of the due date
- (and we'll often beat this deadline, 1.5x weeks or so)
- You're always welcome to ask as well (re: exams)

Content:

- Sets (subsets, empty set, powerset)

- Set Builder Notation

- Set Operations (Union, Intersection, Complement, Difference)
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Empty set , Integers Natural Numbers Real Numbers
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Set Builder Notation: one way to express a set
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In Class Activity: Set Builder Practice
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Express the set A by explicitly listing all items it contains K
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Express the set B using set builder notation

B = set of all natural numbers x which have x mod 3 =0 and x mod 7 =0 and x < 40

(++ list all of its items)
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Zahlen is german for "whole number"

(where the Z for integers comes from)



Venn Diagram: a way of visually representing set membership
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H = set of all sHaded shapes
Q =set of all sQuares

U = Universal set, contains all shapes
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Venn Diagram Gotcha: Just because’an area exists, doesn't mean it contains any items (may be empty)

(these Venn Diagrams represent shapes from previous slide)
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Generalizable representation:

This classic venn-diagram has a space for

any item's set membership

This representation is valid in the special
case where one set is contained in another
(i.e. Q has noitems not in H)
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Set Operation:. (all the items in one set OR another)
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Set Operatior‘ntersection (all the items in one set AND another)
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Set Operatior‘ Difference (All items in one set but not another)
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Set Operation#Symmetric Difference (All items in one set XOR another)
(All items in one set or the other, but not both)
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In Class Activity

Shade the indicated areas in each venn diagram
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areas in each venn diagram
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In Class Activity

Shade the indicated areas in each venn diagram
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In Class Activity

Shade the indicated areas in each venn diagram
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Set Terminology:ﬂisjoint Sets (two sets are disjoint if no item is in both sets)
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Set Terminology: subsets
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Set Terminology:(Set Equality

Given sets A, B: we say that A=B if A is a subset of B and B is a subset of A.
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awkward at first look ... but allows for clear set equality proof approach. to show sets A = B:
- show that all items in A are in B and
- show that all items in B arein A
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Set Terminology: Proper Subset (one set is contained in another, larger, set)
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“ number of items in a set)
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In Class Activity

A={3, 4,5}
B ={4, 5}
C={5}

Compute each of the following

|Al
|AUB|
| P(O)]
| P(B)|
| P(A) |

K~ Qoweaser oF A

\‘\!Q‘T \'(0""7 \03
3 4 5 o)
% ¥ ¢
F F F &
F F T 53
F T_/F%"g
I g 5 W
T F F 15y
T F T 3383
T T F 338
T T T 13‘0\63



