CS1800
Day 19 We'll get started at 9:53

Admin:
hw8 (function growth, sequences & series) released today (tuesday)
- due Nov 26 (tuesday)
- includes class 18 & 19 content
exam2 & hw7 available by Nov 27 (likely the 25th)
- we'll push updated grade estimates to canvas then too

Content:
- function growth
- big-o, big-theta, big-omega notation



In Class Activity

Which gift will produce more value in one's lifetime?
- a magic penny which doubles it value every 3 years
- $10 a day

1. write first impressions (before computing) what do you think?
2. explicitly label your assumptions
3. compute & explain

assumption: live to 80 years, currently 20 years old.

value of penny is 2220 * .01 = 10485.76
value of $10 a day= 10 * 365 * 60 = 219000



In Class Activity:

Which gift will produce more value over an infinite amount of time?
- a magic penny which doubles its value every 100000 years
- $100000000000000 a second

1. write first impressions (before computing) what do you think?
2. explicitly label your assumptions
3. explain (maybe don't compute ...)



Punchline: some functions grow faster than others

"doubling" (exponential) is eventually larger than "constant" (linear) growth
- no matter how small initial value of doubling is
- no matter how large initial value of linear growth is A\ y AR O (_E-&OB
- no matter how often the doubling occurs
- no matter how steep the linear growth occur
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Why do we care that some functions grow faster than others?

Suppose we have two algorithms (i.e. computer programs) which accomplish the
same task on an input of size n.

Algorithm 1 takes .00001 * 2An computations (exponential)

Algorithm 2 takes 99999999 + 99999999n computations (linear)
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Our previous example shows that for sufficiently large input size (n), algorithm 2
will take fewer computations




Create a taxonomy of functions which
allows us to organize them based on
how quickly they grow.

Taxonomy (organization) of life:

crenarchaeota gymnosper
seedless %
euryarchaeota nonvascular angiosperm
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Big-O Notation (First Intuition): Big-O notation is kind of like "less than"
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Big-O Notation (Intution): f(n) = O(g(n)) means g(n) grows faster than f(n)
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Big-O Notation (Intution): f(n) = O(g(n)) means g(n) grows faster than f(n)
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Big-O Notation: Showing that one function is big-O (bounded above) by another

How do we show f(n) = O(g(n))? Choose n_0 and c to satisfy the definition

Example: Show that 5n = o‘(?aAz) Q(‘S _ O( 5(_“\)
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Proving Big-O notation: FAQ

Aren't there many choices for n_0 and c?
There are!

So why do you choose these particular ones?
Remember, our purpose in writing a proof is to be compelling.
For this reason, choose the n_0 and c which are as simple as possible.

How will I know if my values are the simplest? Will credit be taken if
I don't get the absolute simplest values?

There are many n_0, ¢ pairs which are equally compelling. Avoid blindly
choosing really large values (even if they "work" they're hard to understand)



1
In Class Activity: Proving Big-O relations

Prove each true statement below. If a statement is false, give a justificati(kn of why it is
false (sketching a graph is often a good idea here).

20 x = O(x) XA3 = O(xN2)
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Critiquing the Big-O definition: Why do we only care about large n?
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In our context (n=input size, f(n) = compute time) we don't care about small n, they're
easily computed anyways!



Critiquing the Big-O definition: why allow a multiplicative constant c?
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Inclusion of c allows a notion of functions
which grow equally quickly.

Useful insight 1:
Ignore constant multipliers in a function
when considering Big-O

Motivation:

Simplifies how we define

function growth (there are many
functions in the same "growth bucket",
all grow equally quickly)



Function Growth Buckets:
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10 50 100 1,000
ﬁ lgn 0.0003 sec 0.0006 sec 0.0007 sec 0.0010 sec
nl/2 0.0003 sec 0.0007 sec 0.0010 sec 0.0032 sec
‘00 n 0.0010 sec 0.0050 sec 0.0100 sec 0.1000 sec
w‘,}'{ nlgn | 0.0033 sec 0.0282 sec 0.0664 sec 0.9966 sec
O“ v\'h n? 0.0100 sec 0.2500 sec 1.0000 sec 100.00 sec
ku,oo-“ nz 0.1000 sec 12.500 sec 100.00 sec 1.1574 day
n 1.0000 sec | 10.427 min 2.7778 hrs 31710 vrs

n® | 1.6667 min | 18.102 day 3.1710 yrs

2" ) 0.1024 sec | 35.702 cen | 4 x 106 ce 1 cen
n! 362.88 sec | 1 x 10°! cen | 3 x 10 cen | 1% cen

Table 14.1: Time required to process n items at a speed of 10,000 operations/sec using ten
different algorithms. Note: The units above are seconds (sec), minutes (min), hours (hrs), days

(day), years (yrs), and centuries (cen)!



Useful insight 2: When assessing functions growth, slower growing terms don't impact

Big-O
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Quick In Class Activity: Cl-\g"r
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Give the simplest, stewesTgrowme-=fmction g such that each f(n) = O(g(n))

(see previous slide)
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Big-Omega is the opposite of Big-O:
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In Class Activity:
Tell'whether each of the following statements are true or false

N = O(NA3)  True, NA3 does grow faster / as fast as N

NA2 = Q(N) True, N does grow slower / as slow than NA2

10N +log N = O(.1 N) equivilent to N = O(N), True: .1 N does grow faster / as fast as 10 N + log N

14+ N log2 N =0(15 N log_2 N) equivilent to N log_2 N = ©(N log_2 N), True, both functions grow equally quiclkly

log_2 N =©(log_10 N) (hint: log_b(x) = log_a(x) / log_a(b), to change the base of a log we need only multiply by constant)
log_10 N = constant * log_2 N True, all logs grow equally quickly

Reminders
1 | logN | N | NLogN | NA2 | NA3 | ... | 2AN | 3AN | ... | N!

fln) = O(g(n)) means ["f(n) < g(n)": g grows as fast as f(or faster)
filn)=Q(g(n)) means "f(n)=g(n)": g grows as slowly as f(or slower)
fln) = ©(g(n)) means "f(n) =g(n)" g grows as quickly as f (in same bucket)

( inequalities are analagous and help build intuition,
they're not quite true in a literal sense though (see definitions)



