
CS1800
Day 19 We'll get started at 9:53

Admin:
hw8 (function growth, sequences & series) released today (tuesday)

- due Nov 26 (tuesday)
- includes class 18 & 19 content

exam2 & hw7 available by Nov 27 (likely the 25th)
- we'll push updated grade estimates to canvas then too

Content:
- function growth
- big-o, big-theta, big-omega notation



In Class Activity

Which gift will produce more value in one's lifetime?
- a magic penny which doubles it value every 3 years
- $10 a day

1.  write first impressions (before computing) what do you think?
2.  explicitly label your assumptions
3.  compute & explain

assumption: live to 80 years, currently 20 years old.  

value of penny is 2^20 * .01 = 10485.76
value of $10 a day= 10 * 365 * 60 = 219000



In Class Activity:

Which gift will produce more value over an infinite amount of time?
- a magic penny which doubles its value every 100000 years
- $100000000000000 a second

1.  write first impressions (before computing) what do you think?
2.  explicitly label your assumptions
3.  explain (maybe don't compute ...)



Punchline: some functions grow faster than others

"doubling" (exponential) is eventually larger than "constant" (linear) growth
- no matter how small initial value of doubling is
- no matter how large initial value of linear growth is
- no matter how often the doubling occurs
- no matter how steep the linear growth occurs



Why do we care that some functions grow faster than others?

Suppose we have two algorithms (i.e. computer programs) which accomplish the 
same task on an input of size n.
Algorithm 1 takes .00001 * 2^n computations (exponential)
Algorithm 2 takes 99999999 + 99999999n computations (linear)

Our previous example shows that for sufficiently large input size (n), algorithm 2 
will take fewer computations 



Taxonomy (organization) of life:Objective:

Create a taxonomy of functions which
allows us to organize them based on 
how quickly they grow.



Big-O Notation (First Intuition): Big-O notation is kind of like "less than"



Big-O Notation (Intution): f(n) = O(g(n)) means g(n) grows faster than f(n)



Big-O Notation (Intution): f(n) = O(g(n)) means g(n) grows faster than f(n)



Big-O Notation: Showing that one function is big-O (bounded above) by another

How do we show f(n) = O(g(n))? Choose n_0 and c to satisfy the definition

Example: Show that 5n = O(n^2)



Proving Big-O notation: FAQ

Aren't there many choices for n_0 and c?
There are!

So why do you choose these particular ones?
Remember, our purpose in writing a proof is to be compelling.
For this reason, choose the n_0 and c which are as simple as possible.

How will I know if my values are the simplest?  Will credit be taken if 
I don't get the absolute simplest values?

There are many n_0, c pairs which are equally compelling.  Avoid blindly
choosing really large values (even if they "work" they're hard to understand) 



In Class Activity: Proving Big-O relations

Prove each true statement below.  If a statement is false, give a justification of why it is
false (sketching a graph is often a good idea here).

20 x = O(x) x^3 = O(x^2)

x = O(20x) x^2 = O(x^3)





Critiquing the Big-O definition: Why do we only care about large n?

Size of input
In our context (n=input size, f(n) = compute time) we don't care about small n, they're
easily computed anyways!



Critiquing the Big-O definition: why allow a multiplicative constant c?

Inclusion of c allows a notion of functions
which grow equally quickly.  

Useful insight 1: 
Ignore constant multipliers in a function
when considering Big-O

Motivation: 
Simplifies how we define 
function growth (there are many 
functions in the same "growth bucket", 
all grow equally quickly)



Function Growth Buckets:



Function Growth: Why do we care again? (taken from Fell / Aslam's "Discrete Structures")



Useful insight 2: When assessing functions growth, slower growing terms don't impact
Big-O



Quickly Assessing (but not proving) Function Growth:

Insight1: ignore constant multipliers

Insight2: discard slower growing terms



Quick In Class Activity:

Give the simplest, slowest growing function g(n) such that each f(n) = O(g(n))
(see previous slide)



Big-Omega is the opposite of Big-O:



Big Theta: when two functions grow equally quickly





inequalities are analagous and help build intuition,
they're not quite true in a literal sense though (see definitions)

In Class Activity:
Tell whether each of the following statements are true or false

N = O(N^3) True, N^3 does grow faster / as fast as N

N^2 = Ω(N) True, N does grow slower / as slow than N^2

10N + log N = O(.1 N) equivilent to N = O(N), True: .1 N does grow faster / as fast as 10 N + log N

14 + N log_2 N = Θ(15 N log_2 N) equivilent to N log_2 N = Θ(N log_2 N), True,  both functions grow equally quiclkly

log_2 N = Θ(log_10 N) (hint: log_b(x) = log_a(x) / log_a(b), to change the base of a log we need only multiply by constant)
log_10 N = constant * log_2 N True, all logs grow equally quickly

Reminders
1 | log N | N |NLogN | N^2 | N^3 | ... |2^N | 3^N | ... | N!

f(n) = O(g(n)) means "f(n) ≤ g(n)": g grows as fast as f (or faster)
f(n) = Ω(g(n)) means "f(n) ≥ g(n)": g grows as slowly as f (or slower)
f(n) = Θ(g(n)) means "f(n) = g(n)": g grows as quickly as f (in same bucket)


