CS1800 Day 16 (we'll start @ 952 to give everyone a chance to get a seat)

Admin:
- HW6 (graphs) due this Friday Nov 8
- Exam2:
- next friday Nov 15
- review next week in recitation (no quiz)
- you'll get practice problems this Friday Nov 8
- HW7 (induction) is also due next Friday Nov 15
- not graded before exam2 but you'll have other induction examples to study from

Content:

Induction (proving a sequence of statements)
- Proving a conditional P -> Q

- Weak Induction (algebraic equality)



Why write a proofin CS?

So far:
To demonstrate that an algorithm works
- e.g. how can we show that Dijkstra's Algorithm really does find the shortest path?
(our previous class notes are suggestive ... but I wouldn't call them a "proof")
- e.g. how can we show that Euclid's Division Algorithm really does convert to binary?

Towards the end of the semester
To demonstrate that one function is always bigger than another

- e.g. *insertion sort will take more operations to sort a list than merge sort

* ... in the worst case (more to come later)



Proving a conditional

Define:
a rectangle is a polygon with 4 sides whose interior angles are all 90 degrees
a square is a polygon with 4 equal sides whose interior angles are all 90 degrees

Assume a sha uare
- then the shape has 4 sides and interior angles which are all 90 degrees
- then the shape is a rectangle



Proving a conditional
P — O
@ Asseme © A—

@ QoW E SEauencE of WD L oy Tion™y

S te £SO AT Q

+eQ

% ,(_/-P© —»®

Tip: Use P somewhere in your argument to get to Q
(Otherwise Q true by itself, if so its simpler to drop conditioning on P)



Define: integer z is even if there exists some integer a with z = 2a

Useful fact: multiplying two integers always yields another integer

Prove the following statement:

(G itegerz s everthen 2 squared is also even.
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Approach:

Partition all possibilities into cases, argue each will imply Q

Example: If you wear sunscreen on every sunny day, then you won't get any burns from the sun.

Proof: Assume if one is in the sun, then they wear sunscreen

Notice: we argue from each case to conclusion Q. The argument has a feeling of "no matter what case ... Q"
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Approach:
Simplify your argument by combining your cases, often by re-labelling or re-orienting how you define things.

Example: If you cut a 100g wheel of cheese into 2 pieces, one side will be at least 50g

Proo
WLOG, let us call the mass of larger piece A and the smaller mass B.

Th' A+B
+ A 'ﬁrst equality from B < A)
so tha
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CoenENBLTNCG  Faom a=) To A=D
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Induction allows us to prove a never-ending sequence of statements: S(1), S(2), S(3), S(4), ...

Process: l Metaphor (Dominos):

- Place each other domino so that if the

q.,g—\ swggehind it falls, it too will fall

( ) 3
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Weak Induction: Algebraic Equality )&
Ne
Show that the sum of the first n odd numbers is nA2
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While not part of our proof, it can help to test statement out a bit. Is this statement reasonable?
We explore below:
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A template for equality / inequality style induction proofs: 6?‘0{(6}‘(}3—{ ‘\\ p

~define & remind: statement n

o
/f.choose base,case. n. & show it o ‘.L 3~S,., 7 “« ‘\‘<at\- =
3. write "inductive step: if statement n then statement n + 1 e®®
4. Prove inductive step:
a. assume statement n (inductive hypothesis) %’O(, C)(i “g\
b. write statement n + 1 in two halves

> P
(tip: start at sum side, work towards other side) ‘\“\ \ = \Q
c. apply assumption to _get fromsonerhalf toother
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A template for equality / inequality style induction proofs:

1. define & remind: statement n sTM@@r (\
2. choose base case n & show it
3. write "inductive step: if statement n then s
4. Prove inductive step:

a. assume statement n (inductive hypothesis)

\*Qr S Lt (d c\"'\\ < 0
b. write statement n + 1 in two halves

Gese CoE Lﬁ' \3 2
(tip: start at sum side, work towards other side)

c. apply assumption to get from one half to other \ = \a = (\é
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<walk through the induction rubric / guide on website>



In Class Activity:

Using induction prove that the sum of consecutive integers is n (n+1) / 2:
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/define & remind: statement n
. choose base case n & show it

/"';.write "inductive step: if statement n then statement n + 1
~—N¢. Prove inductive step:

a. assume statement n (inductive hypothesis)
b. write statement n + 1 in two halves

(tip: start at sum side, work towards other side)
c. apply assumption to get from one half to other
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Using induction prove that the sum of consecutive integers is n (n+1) / 2: S-
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1. define & remind: statement n
2. choose base case n & show it
3. write "inductive step: if statement n then staten
4. Prove inductive step:
a. assume statement n (inductive hypothesis)
b. write statement n + 1 in two halves
(tip: start at sum side, work towards oth
pply assumption to get from one half to of




In Class Activity:

Using induction prove that the sum of consecutive integers is n (n+1) / 2:
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