

The second difference is constant

Exercise | Identify arithmetic, geometric, quadratic or noné. If anthmetic or geométric write in sum notation 1) 6, 15, 28, 45, 66, 91 Quadratic 9131721 4 4 4 2) 1, -4, 16, -64, 256, Greometric x-4 x-4 x-4 $\sum_{k=1}^{\infty} \left| -\left(-4\right)^{k}\right|$ 3) 4, 7, 10, 13, 16, 19, Hrithmetic 24+3K K=0 4) 2, 7, 11, 42, -4 5 4 31 -46 Nore 1 27 2/7 . 7/1

Geometric Senes Partial Sum

This can be a bit unintuitive for now we get this equation. Humor me for a moment

Partial $S = \mathcal{E} \cap \mathcal{A} \cap \mathcal{K} = \mathcal{A} \cap \mathcal{$ We want So let's compute r.S., for fun.... $r \cdot S = ar + ar^{2} + ar^{3} + \dots + ar^{N} + ar^{N+1}$ So consider the following: $S - rS = (a + ar + ar^{2} + ... + ar^{n-1} + ar^{n})$ $- (ar + ar^{2} + ... + ar^{n-1} + ar^{n} + ar^{n+1})$ all of these terms cancel out Leaving $S - rS = a - ar^{N+1}$ Remember S is what we want to compute so we solve for s $S(1-r) = a - ar^{N+1}$ 1-r

Example 1+2+4+8+16

remember even though 5 terms, largest value of k is 4

Summ	iony of Arith	metic, Gieometr	IC & Quadrata
	(K=6)		
	Arithmetic	Geometric	Quadratic
Haw to	Z 4 6 8 10	1 Z 4 8 16	1 3 7 13 ZI
identify	Difference constant	Constant ratio	+Z+Z+Z
			Constant second difference
Expression of Single term	a, + dk		ak2+ bk+c
Computing Partial Sum		$\frac{N}{E} a_0 r^{K} = a_0 \left(1 - r^{N+1}\right)$	Calculus fun (not (SIBOO)

