
CS1800 day 3

Admin:
- hw1 released today (due the following friday, as nearly all HWs are)
- tutoring groups

Content:
- Two's complement (system to represent negative binary numbers)
- Overflow
- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?

Computers store all values with the same number of bits

why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?

For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on last slide)

Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)

e.g. (110)_2 = 6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)

Sign bit*:

A not-so-great number system for negative values

Two's complement: A better way to store negative numbers

Big idea: the most significant (biggest) place value is negative, all others are positive

Example: 3-bit two's complement

Assumes that correct
result may be
represented (more later)

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify
why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

0 unsigned 2 bit integer
-2 unsigned 3 bit integer
0 3 bit 2's complement
-4 3 bit 2's complement
-4 4 bit 2's complement
5 4 bit 2's complement
10 4 bit 2's complement
-3 4 bit 2's complement

(++) What does the 2's complement idea look like in a base which isn't 2? Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?

0 unsigned 2 bit integer

-2 unsigned 3 bit integer

impossible! each place value is positive,
settting those bits to 1 only makes a value bigger

0 3 bit 2's complement

-4 3 bit 2's complement

-4 4 bit 2's complement

5 4 bit 2's complement

10 4 bit 2's complement

-3 4 bit 2's complement

What values can we represent with N bits?

Unsigned Integers Two's Complement

We can represent all whole values from smallest to largest (including smallest & largest)
(we won't justify this)

What values can we represent with N bits? (representability)

Unsigned Integers Two's Complement

Overflow: the outcome of an operation can't be represented in the given number system

example from earlier in lesson:

7 + 1 = 8 as 3 bit values

overflow since 8 can't be represented as a 3-bit value

Common misconception:

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: bit discard not relevant when determining overflow

Decimal to N-bit two's complement: preliminary

1. Validate that value can be represented as N-bit two's complement (see "representability")

2. If value is positive, its the same as N bit unsigned integer
methods:

- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide

Decimal to N-bit two's complement: "x" method for negative representable values

A. Solve for X
B. Represent X as N-1 bit
 unsigned int
C. Append a leading 1 to
 indicate the -2^{N-1}

"X" method example

Represent -2 in 4 bit 2's complement

In Class Activity 2

If possible, express each of the following as a 6 bit two's complement value. Use the "x" method
where possible.

-5
5
32

(floating point if time)

img credit: wikipedia

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system

(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

