CS1800 day 3

Admin:
- hwl released today (due the following friday, as nearly all HWs are)
- tutoring groups

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)



Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?
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For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on Tast slide)



Number Systems: C\ \\ O

Currently we're missing:
- negative values (e.g. -43) Q
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g. (110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)



Sign bit*:

A not-so-great number system for negative values
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Two's complement: A better way to store negative numbers
Big idea: the most significant (biggest) place value is negative, all others are positive

l Example: 3-bit two's complement
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* Assumes that correct
result may be
represented (more later)



In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify
why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

0 unsigned 2 bit integer
-2 unsigned 3 bit integer
0 3 bit 2's complement
-4 3 bit 2's complement
-4 4 bit 2's complement
5 4 bit 2's complement
10 4 bit 2's complement
-3 4 bit 2's complement

(++) What does the 2's complement idea look like in a base which isn't 2?7 Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?



0O unsigned 2 bitinteger
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-2 unsigned 3 bit integer \

Y o
impossible! each place value is positive, \ \ \ X
settting those bits to 1 only makes a value bigger
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-4 4 bit2's complement
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What values can we represent with N bits?
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What values can we represent with N bits? (representability)

Unsigned Integers
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We can represent all whole values from smallest to largest (including smallest & largest)

(we won't justify this)
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Overflow: the outcome of an operation can't be represented in the given number system

example from earlier in lesson: é( ‘)b 4 Cbo\ > = (2«00039

7 + 1 = 8 as 3 bit values ....\ . \ - 0 Dsc,mo

overflow since 8 can't be represented as a 3-bit value

Common misconception: A

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: bit discard not relevant when determining overflow



Decimal to N-bit two's complement: preliminary
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lidate that value can be represented as N-bit two's complement (see "representability")

If value is positive, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide



Decimal to N-bit two's complement: “"x" method for negative representable values

/'\? A. Solve for X
B. Represent X as N-1 bit
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||>(|I methOd example 6““\, : ( - a“'\

Represent-2 in 4 bit 2's complement = -a = —?3
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In Class Activity 2

If possible, express each of the following as a 6 bit two's complement value. Use the "x" method

where possible. —
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(floating point if time)



Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
~—— N~

significand base

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

W€ Tmey \Jomey  OocomenT atien

img credit: wikipedia



! \ | 2afae)
1® ﬂ‘
|3

(o %
“ \ |l \ | alas
1 11‘ L& g\‘
T ls ® (s
A7 14 ‘J A7 14 J




(mnmu(

-—
-—

-\



