CS1800 day 3

Admin:
- hwl released today (due the following friday, as nearly all HWs are)
- tutoring groups

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?

- om»(Cucse Tanet
C\l\} (oo \ Ors can BE

S<oRED
7 % = D
Tas S VedED

For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on Tast slide)

Number Systems: C\ \\ O

Currently we're missing:
- negative values (e.g. -43) Q
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g. (110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)

Sign bit*:

A not-so-great number system for negative values
) L
3 (g Ot BT
= |
| € nesaTwé (00\36
OV
O OTHER @ °°>a -0
Lyvey > .
| ' - vl s -
\ ololo] (-9,
\J Ll o ‘\a - -\

S t N ‘3}\’(

No ONME
CEQD

Proecemy

\

o9&
OPEANT

NS Y1ED N CoN R
excC

LEso S
D\&CA“D

[14), * (D, G,

A |

(5 . \ 1\
O 4,00‘\

® o

Two's complement: A better way to store negative numbers
Big idea: the most significant (biggest) place value is negative, all others are positive

l Example: 3-bit two's complement

¢ LEaD NG BT

\9 .Zeo
a ‘9 wommf \S
LI—NF(vo

XY
Epordt CRYSeNED

Tt's compumenT Casgiemy Secved

‘ Ooo_ o?éﬂ.k'“bk)s \4\&50
Léso LS

ONIOUE
CEQD

(<Doo>a =0

|

al

—

(\m 33 * (_oo%e-’—

con R TS

D‘saﬁo

(SN

O

* Assumes that correct
result may be
represented (more later)

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify
why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

0 unsigned 2 bit integer
-2 unsigned 3 bit integer
0 3 bit 2's complement
-4 3 bit 2's complement
-4 4 bit 2's complement
5 4 bit 2's complement
10 4 bit 2's complement
-3 4 bit 2's complement

(++) What does the 2's complement idea look like in a base which isn't 2?7 Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?

0O unsigned 2 bitinteger

(o o), '\; \‘o \

-2 unsigned 3 bit integer \

Y o
impossible! each place value is positive, \ \ \ X
settting those bits to 1 only makes a value bigger

- TR
0 3bit2'scomplagment

Z@oogsa \ o| o OX
-4 3 bit2's complement M3 \

QOO\: Y‘\\ﬂj

-4 4 bit2's complement

—b"i

8 (

(\\ 003 \ \

\ O}

—

5 4b|t25complement,_8 Y 9 1

o), Bl

10 4 bit2's complement -5 U 3

-b’c"\-\o ~0

—

-4

Ll

S V%‘bfﬂ&r WE AN

-3 4 bit2's complement
-8 4 2. |

LIy

-5 =9+

x=d

Y3+ =71

GET \D S
IN\POSS R LE

What values can we represent with N bits?

Ug‘ﬁ%e&lnqge@ 1 [Two's Complement
QN-'\, o ® \ ° FQN'\O . 3‘ ao
h\\\\} Sl 1]
S MmALesT VALOE SMALLEST VALOE
N-\
O -

&

LAaeesT VALE LiacesT JALD

A\
3" -\ Q)

What values can we represent with N bits? (representability)

Unsigned Integers
o

M. 3 9

UL

& MALLEST VALVE

O

L AQeEsT VALE

3" -\

r

Two's Complement
o

Mo S 9

UL

SMM—LLS? VALVE
N-\

We can represent all whole values from smallest to largest (including smallest & largest)

(we won't justify this)

O JIETCow)

Overflow: the outcome of an operation can't be represented in the given number system

example from earlier in lesson: é(‘)b 4 Cbo\ > = (2«00039

7 + 1 = 8 as 3 bit values\ . \ - 0 Dsc,mo

overflow since 8 can't be represented as a 3-bit value

Common misconception: A

There are times when we discard a bit but result is correct (no overflow occurs)

punchline: bit discard not relevant when determining overflow

Decimal to N-bit two's complement: preliminary

I AP A S U
T L

lidate that value can be represented as N-bit two's complement (see "representability")

If value is positive, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

3. If value is negative: see "x" method on next slide

Decimal to N-bit two's complement: “"x" method for negative representable values

/'\? A. Solve for X
B. Represent X as N-1 bit

Qecme * AS unsigned it _
C. Append aleading 1 to
VAWE of indicate the -2~ {N-1}
Last N-U TS

\IA ;06 =
>0 TUKT

N-\

||>(|I methOd example 6““\, : (- a“'\

Represent-2 in 4 bit 2's complement = -a = —?3

%‘636 St= ;N - - \

"& "(9 ! —- 3-\::
v [(of 3
(e, BT IO (=,

__64— X = “a
K= b

In Class Activity 2

If possible, express each of the following as a 6 bit two's complement value. Use the "x" method

where possible. —
N-\
5 Breeess ‘»‘—a - |

< 3
S:L-l-\-\ Dencst= - 3

(Oool 0\3 3 : -.-'85;

-g VN (g T 3\3 o @

Y S |

W To v\
(\\\Ou)
-224% =S >
X= o
= 10 t+\
= lo*®*>

= (o6 *8 td +|

(floating point if time)

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
~—— N~

significand base

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

W€ Tmey \Jomey OocomenT atien

img credit: wikipedia

! \ | 2afae)
1® ﬂ‘
|3

(o %
“ \ |l \ | alas
1 11‘ L& g\‘
T ls ® (s
A7 14 ‘J A7 14 J

(mnmu(

-—
-—

-\

