CS1800 Day 17

Admin:
- HW6 due today
- HW7 (induction) released today (due next Friday)
- slightly shorter than most:
- more time to prep for exam2
- will only count as 80% of other HWs with 100 points (HW7 has only 80 points)
- exam2 is next Friday in class
- practice exam2 problems (and solution) available now
- prep tip: don't peek at solutions before you've given a problem your best effort

Content:

- Summation Notation
- Strong induction

- Induction: inequality



Exam?2: outline

O oneinduction problem (equality or inequality)

OO0 BFS/DFS orderings

O Dijkstra's Shortest Path Problem (show all steps, as shown in HW)
O Bayes Rule Problem

O Expected Value / Variance Problem

O Counting style probability (each outcome equally likely)
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In Class Activity: Summation Notation Led e\ K23 KL=3D  Ley
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Express each sum below in summation notati
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Compute each sum below (the second one has a pattern and simplifies)
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The black writing below if excerpt from last class's final ICA. The blue text says the same using summations.
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You can trim off last term (immediately above this text) from a summation notation.
Often helpful to apply inductive hypothesis (assumption)



Examining different induction structures: making change with 3 and 4 cent pieces
Claim: Using only 3 and 4 cent coins, one can produce any whole-number of cents greater than or equal to 6

Proof:
Statement n: there exists a way to produce exactly n cents using 3 and 4 cent coins

Base Cases (there are many):
6cents=3+3 7cents=3+4 8cents=4+4

Induction Step: If statement 6, 7, 8, 9, ..., n are all true, then statement n + 1 is true

Assume: some combo of 3 and 4 cent coins produce 6 cents, 7 cents, 8 cents, ..., n cents
Case 1: the combo of 3 and 4 cents to produce n cents includes a 3 cent coin
- replace this 3 cent coin with a 4 cent coin: new combo produces n + 1 cents
Case 2: the combo of 3 and 4 cents to produce n cents doesn't include a 3 cent coin
- it must contain at least two 4 cent coins (n is at least 8, see base cases above)
- replace these two 4 cent coins with three 3 cent coins: new combo produces n + 1 cents



Induction allows us to prove a never-ending sequence of statements: S(1), S(2), S(3), S(4), ...

Process:

Metaphor (Dominos):
To knock over all the dominos
- Push over the first one

- Place each other domino so that if ALL
dominos behind it falls, it too will fall
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When should I use weak vs strong induction?

Both are always available to you, you may find one method produces a simpler
proof (usually weak induction, if it can get the job done).



In Class Acitivy: Why do we study Induction with inequalities?

Suppose two algorithms both accomplish the same task but take a different number of "comgutes’

For an input of size N:

to do so.
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Input Size

3

5

- Algorithm 1 takes: 2N computeg

- Algorithm 2 takes: N! computes

- Complete the table above

- which algorithm would you prefer for a list of size n=2?
algorithm 2 uses n! = 2 operations while algorithm 1 uses 2AN = 4 operations, algorith

- which algorithm would you prefer for a list of size n=5?
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algorithm 1 uses 2/An = 32 operations while algorithm 2 uses N! = 120, algorithm 1 is faster

- if you had to pick one algorithm for lists of any size, which would you choose, why?
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n! > 2An for n which are sufficiently large (algorithm 1, 2AN, will use fewer computations for lists which are large enough)




Induction with inequalities: SC‘\):- s as\ 4 “\ o

Prove that 2AN _<.N! for all N above some threshold. T

One N=4 S = o M=l =wl
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ASSO“\E sﬁ 4 “\ Induction Recipe (from previous lesson)

#define & remind: statement n
N+ N 2 i
a — 'a ) /choose base case n & show it
fwrite "inductive step: if S(n) then S(n+1)
4 “‘ . a a 4 W\ )./Prove inductive step:
°

/a.’assume statement n (inductive hypothesis)

< ‘\\\ (N*D ywrite statement n + 1 in two halves
- X B\ (tip: start at sum side, work to other side)
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c. apply assumption to get from one half to other



Induction with inequalities: sol SQ\B..- ! a“\ < | )

Prove that 2AN < N! for all N above some threshold.
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Induction Recipe (from previous lesson)

(\) 1. define & remind: statement n
p\"5""‘& Q L Q \' 2. choose base case n & show it
‘4& \ (N a 3. write "inductive step: if S(n) then S(n+1)
é = a + 4. Prove inductive step:
L N\ 53 a. assume statement n (inductive hypothesis)
°

\ b. write statement n + 1 in two halves
( N\ . Q-& | -=<N + \ (tip: start at sum side, work to other side)
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c. apply assumption to get from one half to other



Algebra: Working with inequalities (1 of 4)

Move 1: add the same things to both sides, it preserves the inequality

© 5 4 l.\ TEn) Se 1D L “\+\o

xyte ( Nt < AR



Algebra: Working with inequalities (2 of 4)

Move 2: multiply by a positive value, it preserves the inequality
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Move 3: multiply by a negative value, it swaps the inequality direction
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Algebra: Working with inequalities (3 of 4)

Move 4: sum two inequalities (large side together & small side together)
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Algebra: Working with inequalities (4 of 4)

Move 5 (another view of move 4 really):
- you can replace a term in smaller side of inequality with something smaller
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- you can also replace a term in larger side of inequality with something larger
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Tip: This is one of the most common manipulations in inequality induction problems



Input Size 1 2 3 5 6
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In Class Activity:

Show that NA2 > N + 10 for all N above some value
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. . Input Size 1 2 3 4 5 6
In Class Activity: sol
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Complete the table: N+ 10 1 0 N ' S ‘o

Show that NA2 > N + 10 for all N above some value
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