
CS1800 Day 15

Admin:
- HW5 (probability) due today
- HW6 (graphs) released today
- "Extra" video on BFS / DFS (see website)
- might end few mins early today, feel free to hang out if you have BFS / DFS or Dijkstra questions
`
Content:
Searching through all the nodes in a graph:

- Breadth First Search (BFS)
- Depth First Search (DFS)

Finding the shortest path between two nodes in a weighted graph:
- Dijkstra's Algorithm



Searching a graph: (BFS & DFS intro)

Goal: Using a computer, walk (order) to all nodes which are connected to node A



Depth First Search: Inuition & Animation

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

<view gif>

gif source: https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html



Breadth First Search: Intuition & Animation

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

<view gif>

gif source: https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

BFS / DFS require some starting node be given,
where the search is initialized.



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

A's neighbors are {B, C}.  We
could visit them in any order (BC or 
CB) as a valid BFS.  We choose 
alphabetical ordering to standardize
output



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

B's neighbors are {A, D, E}
but we only add the unvisited
nodes to our list (again in 
alpha order)



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

(C has no unvisited
 neighbors to add)

Looking at the picture, you can tell we're done.  
The computer doesn't know ... must finish BFS on visited list



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

(D has no unvisited
 neighbors to add)

Looking at the picture, you can tell we're done.  
The computer doesn't know ... must finish BFS on visited list



Breadth First Search: Example

Approach: "Visit all the vertices adjacent to the starting vertex,
  then do a breadth first search from each of those vertices."

Looking at the picture, you can tell we're done.  
The computer doesn't know ... must finish BFS on visited list

(E has no unvisited
 neighbors to add)



In Class Activity: Breadth First Search

Give the BFS ordering of nodes:
- starting at A 
- starting at H
- starting at G



In Class Activity: Breadth First Search

Give the BFS ordering of nodes:
- starting at A 
- starting at H
- starting at G

BFS start @ a: ABCE GDFH JIKL
BFS start @ h: HDFI CJAK LBEG
BFS start @ g: GBAE CDFH JIKL



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

A has two unvisited neighbors {B, C}

Again, we choose to visit the one which is
alphabetically first



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

B has two unvisited neighbors {D, F},
we choose the one which is alphabetically first.



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

D has two unvisited neighbors {E, F},
we choose the one which is alphabetically first.



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

Since E has no unvisited neighbors, we 
backup our path and repeat the DFS process



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

D has 1 unvisited neighbor {F}



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

F has 1 unvisited neighbor {C}



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

C has no unvisited neighbors so we backup

(You can tell from the picture we're done, the computer can't ... 
... we would've arrived at this step if a "z-node" had been present all along)



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

F has no unvisited neighbors so we backup



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

D has no unvisited neighbors so we backup



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

B has no unvisited neighbors so we backup



Depth First Search: Example

Approach: "visit an adjacent, unvisited node as long as possible, 
  then backup one edge and look for another vertex to visit, using a depth first search."

A has no unvisited neighbors so we backup ...
... but we can't backup as A was our starting node.
DFS is complete



In Class Activity: Depth First Search

Give the DFS ordering of nodes:
- starting at A 
- starting at H
- starting at G



In Class Activity: Depth First Search

Give the DFS ordering of nodes:
- starting at A 
- starting at H
- starting at G

DFS start @ A: ABEG CDHF IJKL
DFS start @ H: HDCA BEGF JKLI
DFS start @ G: GBAC DHFI JKLE



BFS / DFS: Why did we do this again?

- BFS/DFS gives you the largest, connected subgraph
- "What are all the cities I can get to taking flights from only one airline?"
- computer can tell if a graph is connected
- one run gives one connected component ... repeat again from univisited node for others

- DFS detects cycles in a graph 
- cycle exists if and only if we bump into a neighbor which has already been visited

- BFS orders all nodes from nearest to furthest starting point

- Comp Sci Education:
- They're very similar to many other graph algorithms
- They can be built recursively (a function which calls itself).  super useful pattern



Reminder:

Take a peek at the BFS / DFS extra video (next to today's notes on webpage)

In 10 minutes you will:
- see a more formulaic approach to BFS / DFS

- useful if you, like me, forget what has / hasn't been visited 

- be introduced to queues / stacks
- see how a computer organizes information as it runs BFS / DFS



An example path from A to G (not shortest):

Shortest Path Problem

What path (sequence of unique, adjacent edges) has the lowest total cost from A to G?

Motivation: Suppose each node is a location and the edges weights are times to travel between the
location.  The shortest path gets us from A to G in the least time



Shortest Path Problem

What path (sequence of unique, adjacent edges) has the lowest total cost from A to G?

Approach: 
- Maintain a list of minimum-path-cost to a subgraph of nodes 
- At every step, add new node (and its edges) to subgraph, choose node with current minimum-path-cost

Why it works:
- the minimum-path-cost of an added node is minimized over all paths in graph 

- (if there were another path with smaller cost, we'd be adding this one instead)
- when our destination node would be added, the path cost to it must be minimized



The 9 in this table means there is a path from our 
starting node (A) to node B with a cost of 9.

Note: the 9 does not specify what this path is (more on this later)

Shortest Path From A to G

We always visit starting node first

Approach:
Update a table of min-cost-to-node for every node

visit node A:
Examine all edges to unvisited nodes:

- new destination? add cost to table



Shortest Path From A to G

next node to visit: unvisited node with minimum cost
(C has cost 2, B has cost 9)

Approach:
Update a table of min-cost-to-node for every node

visit node C:
Examine all edges to unvisited nodes:

- new destination? add cost to table

D is a new destination, add its cost to the table:
- A to C has cost 2 (from table above)
- C to D has cost 3 (from graph)
- A to D (through C) has cost 2 + 3 = 5

F is a new destination, add its cost to the table:
- A to C has cost 2 (from table above)
- C to F has cost 1 (from graph)
- A to F (through C) has cost 2 + 1 = 3



Shortest Path From A to G

... we're still visiting C on this slide

Approach:
Update a table of min-cost-to-node for every node

visit node C:
Examine all edges to unvisited nodes:

- new destination? add cost to table
- old destination w/ lower cost?  update cost in table
- old destination w/ higher/equal cost? ignore this path

Our new path to B:
- A to C has cost 2 (from table)
- C to B has cost 5 (from graph)
- A to B (through C) has cost 2 + 5 = 7

Our old path to B (read directly from table):
- some path exists to B with cost 9 



Shortest Path From A to G

next node to visit: unvisited node with minimum cost
(B has cost 7, D has cost 5, F has cost 3)

E is a new destination: 3 to get to F (table) + 4 (F to E)  = 7

G is a new destination: 3 to get to F (table) + 2 (F to G) = 5

old path to D: 5 (table)
new path to D: 3 to get to F (table) + 2 (F to D) = 5

we ignore this new path, it doesn't get added to table

Approach:
Update a table of min-cost-to-node for every node

visit node F:
Examine all edges to unvisited nodes:

- new destination? add cost to table
- old destination w/ lower cost?  update cost in table
- old destination w/ higher/equal cost? ignore this path



Shortest Path From A to G

next node to visit: unvisited node with minimum cost
(B has cost 7, D has cost 5, E has cost 7, G has cost 5)

Approach:
Update a table of min-cost-to-node for every node

"visit" node G:
since our next node to visit has minimum cost
we stop the algorithm, we have our shortest path!

Stop Algorithm:
Node G, our destination, has minimum cost among unvisited node:

there exists a path from A to G with cost 5

claim: this cost of 5 is minimum (no path with smaller cost from
A to G exists in graph).  See next slide for justification



Shortest Path Problem

What path (sequence of unique, adjacent edges) has the lowest total cost from A to G?

Approach: 
- Maintain a list of minimum-path-cost to a subgraph of nodes 
- At every step, add new node (and its edges) to subgraph, choose node with current minimum-path-cost

Why it works:
- the minimum-path-cost of any newly visited node is minimized over all paths in graph 

- (if there were another path with smaller cost, we'd be visiting it instead)
- when our destination node would be added, the path cost to it must be minimized



Wait ... the minimum cost form A to G is 5 but whats the path?

Lets go back and track each node's predecessor 
(the node immediatley before itself on the shortest path from the starting node)



Shortest Path From A to G

B's predecessor is A.  
That is, this cost of 9 is achieved by:

- some path from our starting node to predecessor
- the edge from the predecessor to this node (A -> B)



Shortest Path From A to G

Notice: B's new predecessor is C.  
That is, this cost of 7 is achieved by:

- some path from our starting node to predecessor
- the edge from the predecessor to this node (B -> C)

By recording the predecessor we record that path (A, C, B) has a lower cost than (A, B)



Shortest Path From A to G

Notice: D's predecessor is unchanged.  

In doing so, we  ignore the new path (through F) that we
examine while visting F

- some path from A to F (cost 3)
- path from F to D (cost 2)



Shortest Path From A to G



How should this look on our HW / exam?



In Class Activity:



Iteration Node Visited A            B            C            D            E            F            G



Full solution to this problem available in "Dijkstra Example".  
It includes step-by-step discussion:

pdf available in today today's notes


