CS1800 day 3

Admin:
- hwl released today (due the following friday, as nearly all HWs are)
- tutoring groups

Content:

- Two's complement (system to represent negative binary numbers)
- Overflow

- Floating point (system to represent non-whole numbers) (if time)

Whats the difference between operating in base-b and operating in base-b on a computer?
Computers store all values with the same number of bits
why? quicker / easier

Assume: a computer is using a 3-bit representation of values. How does it compute & store the
following?

- om»(Cucse Tanet
C\l\} (oo \ Ors can BE

S<oRED
7 % = D
Tas S VedED

For today: assume we're working with values on a computer

- all values are N-digits
(you'll be given this info in problem statement)

- discard the most significant (left-most) digits if needed
(as shown in green on Tast slide)

Number Systems:

Currently we're missing:
- negative values (e.g. -43)
- non-whole values (e.g. 321.12358)

Number systems:

- Unsigned Integers:
can represent whole, non-negative numbers
everything we've done so far are unsigned integers (we just didn't cover name until now)
e.g. (110) 2 =6

- Two's Complement:
can represent whole (potentialy negative) numbers
(will study today)

- Floating Point Values:
non whole-numbers
(will study today if time)

Sign bit*:

A not-so-great number system for negative values
o i
3 S < Ot BT
\ (oe1), = !
OV
O oter @ °°>a -0
Lyvey >
, 2 (‘ ¢ (\ = ’3
\J Ll o ‘\a - -\

%tbk\ i« Pna&oe.w\s \‘\\\
x 00

Nes OMGUE | 0o oPenntenS Y1iEO 19 conREXT XD O

[(PIRRES S Seseas®

(ooo>a=o (\“ 33 ¥ L”Ba‘ Q‘”%a

= O
N\ 9

(‘0033:‘-0 eS 4+

| S

=
:

Two's complement: A better way to store negative numbers

— v

l Example: ?:;t‘)it:tw\o's complement '34-_5 N g\‘\‘

W\ O

-3

Tt's compumenT Casgiemy Secved

‘ Ooo_ o?éﬂ.k'“bk)s \4\&50
Léso LS

ONIOUE
CEQD

(<Doo>a =0

|

al

—

(\m 33 * (_oo%e-’—

con R TS

D‘saﬁo

(SN

O

* Assumes that correct
result may be
represented (more later)

In Class Activity:

If possible, convert each of the following values to the given number system. If not possible, justify
why.

(Use guess-and-check as needed, a reliable decimal-to-2's-complement method coming shortly)

0 unsigned 2 bit integer Q \
-2 unsigned 3 bit integer - L‘

0 3 bit 2's complement

-4 3 bit 2's complement \ J
-4 4 bit 2's complement

5 4 bit 2's complement
10 4 bit 2's complement "'b 4 2)

-3 4 bit 2's complement \ \ \ \)

(++) What does the 2's complement idea look like in a base which isn't 2?7 Does it also have the
properties we love so much in binary (unique zero, addition operations still work)?

0 unsigned 2 bit integer S \
(00); 13

-2 unsigned 3 bit integer: impossible!
- unsigned number systems only represent non-negative values
- each place value is positive, we may not represent a negative value

0 3 bit2js complement -4 9 \

-4 3 bit 2'(2:ocr>n§>n§nt Y \ \ > \3
(100),

-4 4 bit2'sgompleqent -b 4 9
(voo), - AlLleld
o
5 4 bit2'scomplemgent _&_‘_ 40+ 0 =
oS, L] {4020 =4

10 4 bit2's complement 'b 9 9 \

10 isimpossible! biggest value in ¥ \ \ \ \ ‘

4 bit2'scompis(0111l) 2=4+2+1=7 \ —
Yea+) =77

-3 4 bit2's complement

BN K¥
X=9 el 1]

What values can we represent with N bits?

Unsigned Integers

QN\QO' ‘

e ‘W

& MmALLEST JALOE

O

LAaeesT VALE
\

o)

r

Two's Complement
o

,_QNh'\., S 9
ol)]
su\kbl..fb'" VALVE

N~
-3

L, 5T J ALVE

A

45(:>Ck> (}\\\\ (1

3

- o m\

vt !

vyl
¥ 0000\

100000y =-\

ded 4 91

-TT- o |°]

What values can we represent with N bits? (representability)

Unsigned Integers
o

M. 3 9

UL

& MALLEST VALVE

O

L AQeEsT VALE

3" -\

r

Two's Complement
o

Mo S 9

UL

SMM—LLS? VALVE
N-\

We can represent all whole values from smallest to largest (including smallest & largest)

(we won't justify this)

-qa\ {9

Ouentien §\§\5\5=-'1*3-l\=-\ okl =
Overflow: the outcome of an operation can't be represented in the given number system

example from earlier in lesson: é(‘)b 4 Cbo\ > = @chsba

7 + 1 = 8 as 3 bit values © i&QQ
_‘ Y \ Scht

=0
overflow since 8 can't be represented as a 3-bit value

{\5 Common misconception:A

There are times when we discard a bit but result is correct (no overflow occyrs)

punchline: bit discard not relevant when determining overflgw

Decimal to N-bit two's complement: preliminary

I AP A S U
T L

1. Validate that value can be represented as N-bit two's complement (see "representability")

2. If value is positive, its the same as N bit unsigned integer
methods:
- subtract largest power of two
- Euclid's Division Algorithm

(if a non-negative number can be represented in n-bit 2's complement, its the same as n-bit unsigned)

3. If value is negative: see "x" method on next slide

Decimal to N-bit two's complement: “"x" method for negative representable values

K k)) t o A. Solve for X
..a“ \ -2 Q Q o A /\7 B. Represent X as N-1 bit

0 0 T oot Ly
\\\ VAL o€ indicate the -2~ {N-1}
Last N-l B>
((on5100e®
W=
\IA&-Oé = —a +[%

o TUKT

N-\
K= \ALE * S

"X" method example

S

Represent g in 4 bit 2's complement

-\ k)
-—aN - -a :-% YMALCEHT

aﬁ-\'\ = a.b-\ = 77 LARDST

AToL [y ®rx=%5
X=5

In Class Activity 2 > MALLEST = "FSB

LateesT S\
If possible, express each of the following as a 6 bit two's complement value. Use the "x" method
where possible.
\0\% A d 4 3
s (\ | S

: v o el
X 33+
T = X = "S
P HLE X =3
\ b\b‘.m ‘(\,\b& k$b£ a‘
B> DO peeoT 1)
e & o *§*D
o +&+3+ |

TERL (f

(floating point if time)

Floating Point: Representing non-whole values

To express 12.345, rewrite it as:
exponent

N

12.345 = 12345 x 107°
~—— N~

significand base

big idea: the signifcand and exponent will always be whole values and we can store those!

A few notes about the "base"
- isn't the same base the number system for significand & exponent number system
(you can use base 10, as shown, and still store significand & exponent in binary)
- no need to store floating point base per individual value

W€ Tmey \Jomey OocomenT atien

img credit: wikipedia

