CS1800 Day 2

If you have any individual questions, come on down:)

Admin:

- HW1 released Friday (not available yet)
- pencil / paper / notes
- any questions?

Content:

Converting Between Bases:

- subtract-largest-power-of-base method (intuitive)
- euclid's division method (easier ... we'll see later they're the same)

Operating (adding & subtracting) in other bases

Modular Arithmetic:

Division on integers: Floor Division & Remainder

We can't (currently) represent non-whole numbers.

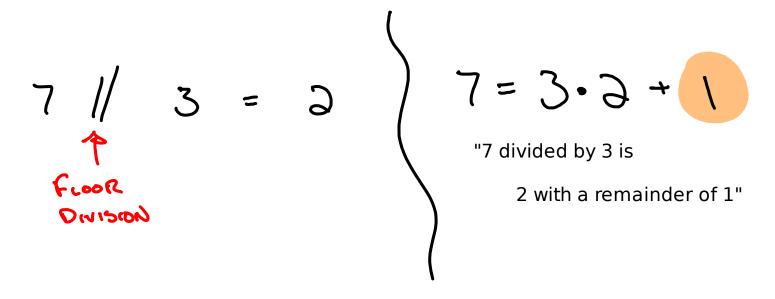
How does division work if we restrict ourselves to whole numbers? (i.e. integers are all whole numbers {..., -3, -2, -1, 0, 1, 2, 3...})

Floor division works just like normal division, but we always round down to nearest whole number

(in example above, 7/3 = 2.3333... so 7 // 3 = 2)

Division on integers: Floor Division & Remainder

Sometimes we're interested in the remainder (motivation to come shortly)



Compute each of the integer divisions below by computing:

- floor division
 - remainder

clearly label which is which (super helpful as we build on this idea shortly)

7 divided by 3
$$7 | 13 = 2$$
 $7 = 3.3 + 1$
25 divided by 2 $25 | 100 = 12$ $25 = 12.3 + 1$
100 divided by 7 $25 = 12$ $25 = 12.3 + 1$
 $25 = 12.3 + 1$
 $25 = 12.3 + 1$
 $25 = 12.3 + 1$
 $25 = 12.3 + 1$

What is the largest and smallest remainder produced by dividing any value by 5?

REMAINDER BETWEEN DINCLUSIVE

$$0 | 15$$
 $1 | 15$
 $1 = 0.5 + 0$
 $1 | 15$
 $2 = 0.5 + 2$
 $3 | 15$
 $4 | 15$
 $4 | 15$
 $5 | 15$
 $5 | 15$
 $6 | 15$
 $6 | 15$
 $7 | 15$
 $7 | 15$

Modular Arithmetic: Motivation via wall-clock time

If the time now is 4 PM:

- what time is it in 1 hour?
- what time is it in 25 = 1 + 24 * 1 hours?
- what time is it in 49 = 1 + 24 * 2 hours?
- what time is it in 73 = 1 + 24 * 3 hours?
- what time is it in 1 + 24 * n hours (for a whole number n)?

Punchline:

When counting time, values are equivilent if they differ by a factor of 24 (e.g. 24, 48, 72 etc)

Notice:

All these values (..., -47, -23, 1, 25, 49, 73, ...) all have remainder 1 when floor dividing by 24

Modulo operator:

 $X \mod 24 = remainder when floor dividing X by 24$

In Class Activity (modulo cool-down, number representation warm-up):

- solve for x:

$$11 \mod 4 = x$$

- Find 4 integers X which all have X mod
$$3 = 2$$

$$= 1.10+9.4+3$$

$$= 1.10+9.4+3$$

$$= 1.10+3$$

$$\times M003 = 3$$
 Find 4 values for \times
 $5 M003 = 3$
 $11 8 3 - 3$
 $14 5 3 - 3$
 $2 M003 = 3$
 $17 2 3 - 3$
 -1
 $3 | 3 = 0$

2 = 0.3+2

$$-13 / 4$$

$$-\frac{13}{4} - 3.05$$

$$-13|14 = -4 - -13 = 4.-4 + 3$$

CONVERTING BETWEEN BASES DONE V Some other DECIMAL (BASE - 10) BASE We'll do this Next

DECIMAL TO ANOTHER BASEI LARGEST SUBTRACT POUER Solve For X 14 = (x) 9, =9 8421 9=4 14 = 8 +6 9,=8 24=16 6+4+ 8 = (1110) = 14

DECIMAL TO ANOTHER BASE: Eucho's Division METHOD

Solve For X

DECIMAL TO ANOTHER BASE: EUCLID'S DIVISION METHOD

Solve FOR X

14= 7.2+0

1. Given decimal value is first value

2. Divide value by base w/ whole numbers (use a remainder)

3 Set new value as base-multiplier

4. Repeat from step 2 until new value is 0 then stop (don't write another line)

5. Glue together all remainders (last-to-first) to produce answer

+ STOP AT C

Express 23 as a binary value using:

- subtract-largest-power-of-base
- Euclid's division method

(++) How are these methods similar? How are they different? How might you demonstrate the Euclid's divisoin method gives the correct answer?

$$3 = 11.9 + 1$$

$$3 = 1.9 + 1$$

$$5 = 3.9 + 1$$

$$5 = 3.9 + 1$$

$$1 = 5.9 + 1$$

$$1 = 5.9 + 1$$

(works just like decimal, though it might feels funny at first)	

Operating (adding & multiplying) in another base

0123456789 ABCOE F Operating in other bases: addition 10 11 13 13 14 15 Perform each of the following addition operations: (304)+ (150),6 133+ 38 1 17=16+1

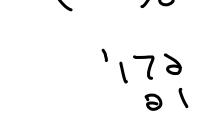
$$\frac{+381}{404}$$
 $+15a$
 $17=16+1$
 $(516)_{16}$

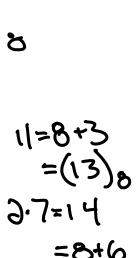
$$17 = (x)_{16}$$

$$\frac{16^3 \cdot 16^3 \cdot 16^5 \cdot 16^6}{11111}$$

$$17 = 16 + 1$$

Operating in other bases: multiplication Perform each of the following multiplication operations:





Operating in other bases (tips):

- use scratch work on the side (in decimal, to be comfortable)

- don't use base-10 values in original problem (convert to given base!)

If you get stuck, make up and write out a similar decimal example, it will prime your brain to make the same moves in the strange, alien base

In Class Activity

Perform each of the following operations in the given base:

$$(39)_{4} \cdot (39)_{4}$$

$$(38)_{4} \cdot (38)_{4}$$

$$(38)_{4} \cdot (38)_{4}$$

1300

2030

4=4+0 3-3+1=7=4+3 3-3=4=4+0

2.3+1=7=4+3

$$(3a)_{4} \cdot (aa)_{4}$$
 $(3a)_{4} \cdot (aa)_{4}$
 $(3a)_{4} \cdot (aa)_{4}$