CS1800
Day 7

Admin:
- hw2 due today @ 11:59 PM
- hw3 available now

Content:

- Computer Representation of sets

- Negation (DeMorgan'’s Laws)

- set algebra & logic algebra (very similar!)
- Logic (digital) circuits



Computer representation of sets:

How does a computer store the following sets?

U={10, 128,8358,12,0,-100} (the universal set, contains all items another set contains
A={10, 8358, 12,0, -100}

B={10, 8358, 0, -100} Q>_

C={ 128 } -

Approach:

Step 1: Assign a natural number (0, 1, 2, 3...) index (position) to all the items in universal set:
Step 2: Represent a set as a bit string (sequence of bits).

If bitO is 1, itemO in set.

If bit1 is 0, item1 not in set.
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1. We need only store every item once, which is important if some of our items would take a lot of
memory to store:

A ={901824918240192491283938}
B ={901824918240192491283938, 1}
C ={901824918240192491283938, 1, 2}

2. Our set operation have a natural correspondance with logical operations: A J E D
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Consider U = {blue, yellow, red}
A = {blue,
B = {m—yettomw, —}

AgB.= {lsttre, yettow, ™}
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Many logical operations on bit string correspond to a set operation

Sets Logic (on bit string)
U = {blue, yellow, red } ‘\ —
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Many logical operations on bit string correspond to a set operation

Sets Logic (on bit string)
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Swapping operators: sets and logic
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In Class Assignment (not for today, this is complete from day 4's notes):

Build a truth table for each of the two expressions below. Results for both might feel familiar, thats ok :)
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<take a look at logic_set_identities.pdf together>

(available on course website next to today's notes)



—¥ Absorption Laws

PAPVQ=P AN(AUB)=A
PV(PAQ =P AU(ANB)=A

Complement Laws
T PV-P=T. AUAC =U
PA-P=F ) AN A =
e e~

N\
Idempotent Laws = & "operation that when done to item, returns the item"

i AUA=A
eip=p AnA=A

Identity

False Vv P=P

True AP=P UNA=A
Domination:
True V P = True UUA=U

False A P = False 0NA=0



Associative Laws
(PvQ)VvR=PV(QVR)
L G P &= -
(PAQ)AR=PA(QAR)

Double Negation
-y = P = P
—

DeMorgan’s Laws

~(PV Q)=
~PAQ=-PV-Q

Distributive
PA(QVR)=
Pv(QAR)=

o 4o) -

PAQ VI(PAR)
PvQA((PVR)

(AUB)UC=AU(BUC)

<P\0Q> C

A (’:°C~> (ANB)NC=AN(BNC)
(A9)Y = A
'1?/\'1@
(AUB)Y = AN B¢
mB) S = A€ U B¢

AN(BUC )=(ANB)U(ANC)
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Simplifying boolean or set expressions (set / logic algebra)
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Simplifying boolean or set expressions (set/ logic algebra) ﬂ\ n@ 0 (_S - (f-\f\ % J (A,m]
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<lego logic gate video https://youtu.be/RA2po1xk_0A?t=5 >

You can build logic gates (AND, OR, NOT) out of real life things!

- legos

(0 = pin pushed in, 1=pin pulled out)
- electronics

(O=low voltage, 1=high voltage)
- water

(0 = empty tube, 1 = tube has water)
- mechanical switches & gears
(0 = lever is down, 1 = lever is up)



Why would you want to build logic gates out of real-life things?

© o« O
"E‘LE‘L/—Y

~

\N?Of'> p\oo\'(totb
\ CooPutiN o
O _?L °© N acwéE
\—

Noee GoenerauN ..




O=F€

Digital Logic (another way of expression boolean algebra) \ = <

Many of these gates have to consider the physical layout of their inputs (pins, water, cable etc) so they
can be arranged to produce intended bezvior.

These "logic g*es" emphasize the physidgt layout and connections betwén gates:
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Digital Logic: circuits
A circuit is a collection of logic gates which have been connected.

What logic expression is equivilent to the output below?
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In Class Activity
For the circuit shown below:
- express it using logical symbols

- simplify this expression using the logical identities shown earlier (label each step please)
- draw a new circuit which is equivilent to your simplified expression

X —— [__> B
Y -

Z

if time / for fun: design your own super complex circuit which is equivilent to something much simpler
(see also, "rube goldberg machine™)
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