CS1800
Day 7

Admin:
- hw2 due today @ 11:59 PM
- hw3 available now

Content:

- Computer Representation of sets

- Negation (DeMorgan'’s Laws)

- set algebra & logic algebra (very similar!)
- Logic (digital) circuits

Computer representation of sets:

How does a computer store the following sets?

U={10, 128,8358,12,0,-100} (the universal set, contains all items another set contains
A={10, 8358, 12,0, -100}

B={10, 8358, 0, -100} Q>_

C={ 128 } -

Approach:

Step 1: Assign a natural number (0, 1, 2, 3...) index (position) to all the items in universal set:
Step 2: Represent a set as a bit string (sequence of bits).

If bitO is 1, itemO in set.

If bit1 is 0, item1 not in set.

u={®, 138 Bs3 B .1

b= Z © g% o -\oo} ST C ConTAWD vcem |\
(o (o1 |

C= O\DooO

1. We need only store every item once, which is important if some of our items would take a lot of
memory to store:

A ={901824918240192491283938}
B ={901824918240192491283938, 1}
C ={901824918240192491283938, 1, 2}

2. Our set operation have a natural correspondance with logical operations: A J E D

\teM\S ') A O(L b

Consider U = {blue, yellow, red}
A = {blue,
B = {m—yettomw, —}

AgB.= {lsttre, yettow, ™}
- B g~ A\)b

—

Many logical operations on bit string correspond to a set operation

Sets Logic (on bit string)
U = {blue, yellow, red } ‘\ —
A = {blue, } =100
B={ vyellow, } (’Dg O\ O
Ac’ = 2 \lau.o».) \ QLD A.—. OO EACA L ¢ A) £0 KTEDN

ALl (TEMS WNOT W Ab" oVl
Pobr § ot e PR
RLL AXEMS W) P\ ofx % P‘ob‘ N o
A0b= @ ﬁe; 1) Aooy Leowac RS

AL rens N A AND o)

Anb=o08 OOEANTION

Many logical operations on bit string correspond to a set operation

Sets Logic (on bit string)
L) A=1oo
B={ yellow, } ()D =0 \ O
l\ Ab = ?’ Hog, ‘[ewou\‘; f\r_-_ ::"% APPA LomcAL KoL
AL cems N A xor © Au:; % Q PEnamion)

qO(\IYB: aX N Y

Oeac: & wow) @\0(5>(- _ ‘\c, 0 bo

Al ems W \BT

< AN
va} 2. L\Q(\QD — A

g) a—— €T Auo W IND

W \TEMS 188 Qud

Set Awe wy st

(o0) = Kb

C
N < v \5>
A%o © X %\)V C_omPLEMESS

S22 K e (AOD>°-—P X & /)\c'[\ c)c

Q\Fren. ALl TURT Wen W WE VE Croven

Co NE of Oc MortanN's LA Conn SETS

Swapping operators: sets and logic

c6s ‘ LoG

C_oMPLEMENT « Nontion 1
| NTERsecnon () Ane A
OIMNEINS O WeLusWweE OfL \

(A6 - K0S [(AvD)= AAD

Ceco Cwm e \(ex 7.

In Class Assignment (not for today, this is complete from day 4's notes):

Build a truth table for each of the two expressions below. Results for both might feel familiar, thats ok :)

< (av ®) TA N B

A (_731 AV ﬂ(Aw>
O

o

{

)

A -0 "(Aj\"ﬁ

A S
o o
o \
L O
LA

G 00~

\
\
© \
O

O oo -
—
O

<take a look at logic_set_identities.pdf together>

(available on course website next to today's notes)

—¥ Absorption Laws

PAPVQ=P AN(AUB)=A
PV(PAQ =P AU(ANB)=A

Complement Laws
T PV-P=T. AUAC =U
PA-P=F) AN A =
e e~

N\
Idempotent Laws = & "operation that when done to item, returns the item"

i AUA=A
eip=p AnA=A

Identity

False Vv P=P

True AP=P UNA=A
Domination:
True V P = True UUA=U

False A P = False 0NA=0

Associative Laws
(PvQ)VvR=PV(QVR)
L G P &= -
(PAQ)AR=PA(QAR)

Double Negation
-y = P = P
—

DeMorgan’s Laws

~(PV Q)=
~PAQ=-PV-Q

Distributive
PA(QVR)=
Pv(QAR)=

o 4o) -

PAQ VI(PAR)
PvQA((PVR)

(AUB)UC=AU(BUC)

<P\0Q> C

A (’:°C~> (ANB)NC=AN(BNC)
(A9)Y = A
'1?/\'1@
(AUB)Y = AN B¢
mB) S = A€ U B¢

AN(BUC)=(ANB)U(ANC)
AumeC)—fAuB)m(AuC)

— e

Simplifying boolean or set expressions (set / logic algebra)

—(Gﬂ\\’@/\ﬂb }Dew\m@

:(—m A A '16> N\ —7&> e, W
= <P\ /\4,@ /\-:Eh Aosocsam e LAW
N éb/\-ﬂ%] o eatoxosT

= A A-b

Simplifying boolean or set expressions (set/ logic algebra) ﬂ\ n@ 0 (_S - (f-\f\ % J (A,m]

(5—3\"} n (75-"-1> <o (\l ‘\\(CB O wrarpetiE
; v 9 ﬁ Q,omvuéﬂ\e'st

— X L OENTITY

% £ cavse Sex| Looie

Stm\gl\Q \ Can

QuLeose

rLoesan (S

v MWy | 4qusaf

O T

So

W\t \bh\7

I!Q C LSS ‘\c‘w‘“l

S mpafy + Lasgel OTEPS '5—:53 07
Q\ebﬁc\ K (37 x5
- @\,‘) p§> 0 @(\p\‘* © 5TUBIT WE

= @ 0 (BnE) Comnend
= Q)(\P\b \OEJX(‘T\"

<lego logic gate video https://youtu.be/RA2po1xk_0A?t=5 >

You can build logic gates (AND, OR, NOT) out of real life things!

- legos

(0 = pin pushed in, 1=pin pulled out)
- electronics

(O=low voltage, 1=high voltage)
- water

(0 = empty tube, 1 = tube has water)
- mechanical switches & gears
(0 = lever is down, 1 = lever is up)

Why would you want to build logic gates out of real-life things?

© o« O
"E‘LE‘L/—Y

~

\N?Of'> p\oo\'(totb
\ CooPutiN o
O _?L °© N acwéE
\—

Noee GoenerauN ..

O=F€

Digital Logic (another way of expression boolean algebra) \ = <

Many of these gates have to consider the physical layout of their inputs (pins, water, cable etc) so they
can be arranged to produce intended bezvior.

These "logic g*es" emphasize the physidgt layout and connections betwén gates:

*1:D—7-)-((Z X‘DO—'Z ’;jm —z

AND
OR
r NOT
Xy |z XN x¥ [z <\ = Xyl =
oo| © oo
23\8‘/ o3 |t °\ oy | v
AR L 1O Glo

>

BUFFER

| IR) >

C e lS

’g f‘ NanD | b SNQR S0 Bertom
' ¥o Rowd

o (| NOT AND NO" o

to| NEonRtE ©OTOIT

il o LJ re

Digital Logic: circuits
A circuit is a collection of logic gates which have been connected.

What logic expression is equivilent to the output below?

N
X ‘>o-' L 0OTPOT

~< K

o, XJ\\I> \ 2.

In Class Activity
For the circuit shown below:
- express it using logical symbols

- simplify this expression using the logical identities shown earlier (label each step please)
- draw a new circuit which is equivilent to your simplified expression

X —— [__> B
Y -

Z

if time / for fun: design your own super complex circuit which is equivilent to something much simpler
(see also, "rube goldberg machine™)

y) gars)Y
1_;})}:3&—? (Aﬂx>\l\6\l T

c,oo'\?mr @ N \IB V&

e = Yy VT

(\\-~4

1)

