Recurrences

1. If mergesort divided its input array into five pieces instead of two, calling mergesort on each piece and combining with a linear-time 5-way merge, what would its recurrence be?

2. Find $T(n)$ for $n = 16$ if $T(1) = 1$ and $T(N) = 4T(N/2) + 1$.
3. Solve the previous $T(N)$ recurrence for its order of growth. (You can approximate and ignore constants).

4. EXTRA ★ Determine the order of growth of the recurrence $T(N) = T(N - 1) + T(N - 2) + T(N - 3)$
Growth of Functions

1. Organize the following functions into six columns. Items in the same column should have the same asymptotic growth rates (they are big-O and big-Θ of each other). If a column is to the left of another column, all its growth rates should be slower than those of the column to its right.

\(n^2, \ n!, \ n \log_2 n, \ 3n, \ 5n^2 + 3, \ 2^n, \ 10000, \ n \log_3 n, \ 100, \ 100n \)

2. Using the definition of big-O, show \(100n + 5 = O(2n) \).

3. Using the definition of big-O, is it true that \(n = O(2^n) \)?
4. True or false and explain: If \(f(n) = \Omega(g(n)) \), then \(g(n) = O(f(n)) \).

Graphs

1. In a complete graph (a graph with all possible edges), how many possible cycles are there that visit all \(V \) vertices and return to the start? (Assume the same basic route with a different start vertex is a different cycle.)

2. In a graph with \(V \) vertices where every vertex has degree 4, how many edges are in the graph?
3. The complement G' of a graph G is the graph where if two vertices share an edge in G, there is no edge between them in G'; and if they didn’t have an edge in G', they do now. Figure out a formula for the number of edges in the complement of a graph with V vertices and E edges.

4. If negative weights are possible, can the minimal weight subgraph that connects all the vertices in a graph contain a cycle? What if negative and zero weights are not possible?
EXTRA Recurrences 1

Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.

a. $T(n) = 2T(n/2) + n^4$.

b. $T(n) = T(7n/10) + n$.

c. $T(n) = 16T(n/4) + n^2$.

d. $T(n) = 7T(n/3) + n^2$.

e. $T(n) = 7T(n/2) + n^2$.

f. $T(n) = 2T(n/4) + \sqrt{n}$.

g. $T(n) = T(n - 2) + n^2$.
Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for sufficiently small n. Make your bounds as tight as possible, and justify your answers.

a. $T(n) = 4T(n/3) + n \lg n$.

b. $T(n) = 3T(n/3) + n/\lg n$.

c. $T(n) = 4T(n/2) + n^2 \sqrt{n}$.

d. $T(n) = 3T(n/3 - 2) + n/2$.

e. $T(n) = 2T(n/2) + n/\lg n$.

f. $T(n) = T(n/2) + T(n/4) + T(n/8) + n$.

g. $T(n) = T(n - 1) + 1/n$.

h. $T(n) = T(n - 1) + \lg n$.

i. $T(n) = T(n - 2) + 1/\lg n$.

j. $T(n) = \sqrt{n}T(\sqrt{n}) + n$.
EXTRA Graphs

1. ★ Prove that if G is a graph with at least 6 vertices, then G or G-complement contains a cycle of length 3.

2. Prove that if G is a graph with all vertices of degree d or higher, then G contains a path of length d.

3. You are given V integers $d_1, d_2, ..., d_V > 0$ that satisfy $\sum_{v \in V} d_v = 2(|V| - 1)$. Explain how to construct a tree with V vertices that have these exact degrees. Hint: by induction over V.
4. ★★ In the group of 10 people, everyone knows at least 5 other people. Prove that they can seat at a round table in such a way that everyone knows the two people sitting next to them. Hint: The problem is asking for a Hamiltonian cycle, lookup “Dirac’s” theorem and make the argument for $n = 10$.
