Intro to graphs
Minimum Spanning Trees
Graphs

- nodes/vertices and edges between vertices
 - set V for vertices, set E for edges
 - we write graph $G = (V,E)$

- example: cities on a map (nodes) and roads (edges)
Adjacency matrix

- \(a_{ij} = 1 \) if there is an edge from vertex \(i \) to vertex \(j \)

- If the graph is undirected, edges go both ways, and the adj. matrix is symmetric

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 1 & 1 \\
3 & 1 & 0 & 1 & 0 & 1 \\
4 & 0 & 1 & 1 & 0 & 1 \\
5 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
\]

- If the graph is directed, the adj. matrix is not necessarily symmetric

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
2 & 0 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 & 1 & 1 & 0 \\
4 & 0 & 1 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 1 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]
Adjacency lists

- linked list marks all edges starting off a given vertex
paths and cycles

- **Path**: a sequence of vertices \((v_1,v_2,v_3,...,v_k)\) such that all \((v_i,v_{i+1})\) are edges in the graph.

- Edges can form a **cycle** = a path that ends in the same vertex it started.

- Paths and cycles are defined for both directed and undirected graphs.
paths and cycles

- **path**: a sequence of vertices \((v_1,v_2,v_3,...,v_k)\) such that all \((v_i,v_{i+1})\) are edges in the graph.

- Edges can form a cycle = a path that ends in the same vertex it started.

- Paths and cycles are defined for both directed and undirected graphs.

paths and cycles

- **path**: a sequence of vertices \((v_1, v_2, v_3, \ldots, v_k)\) such that all \((v_i, v_{i+1})\) are edges in the graph

- edges can form a **cycle** = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs
paths and cycles

- **path**: a sequence of vertices \((v_1,v_2,v_3,...,v_k)\) such that all \((v_i,v_{i+1})\) are edges in the graph

- **edges can form a cycle** = a path that ends in the same vertex it started

- **paths and cycles** are defined for both directed and undirected graphs
paths and cycles

- path: a sequence of vertices \((v_1,v_2,v_3,\ldots,v_k)\) such that all \((v_i,v_{i+1})\) are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs
paths and cycles

- **path**: a sequence of vertices \((v_1, v_2, v_3, \ldots, v_k)\) such that all \((v_i, v_{i+1})\) are edges in the graph.

- Edges can form a **cycle** = a path that ends in the same vertex it started.

- Paths and cycles are defined for both directed and undirected graphs.
paths and cycles

- **path**: a sequence of vertices \((v_1,v_2,v_3,...,v_k)\) such that all \((v_i,v_{i+1})\) are edges in the graph.

- Edges can form a **cycle** = a path that ends in the same vertex it started.

- Paths and cycles are defined for both directed and undirected graphs.
paths and cycles

- **path**: a sequence of vertices \((v_1, v_2, v_3, \ldots, v_k)\) such that all \((v_i, v_{i+1})\) are edges in the graph.

- Edges can form a **cycle** = a path that ends in the same vertex it started.

- Paths and cycles are defined for both directed and undirected graphs.
paths and cycles

- **path**: a sequence of vertices \((v_1, v_2, v_3, ..., v_k)\) such that all (\(v_i, v_{i+1}\)) are edges in the graph

- edges can form a cycle = a path that ends in the same vertex it started

- paths and cycles are defined for both directed and undirected graphs
Traverse/search graphs: BFS

- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] =$ number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.

![Graph Diagram]

- Diagram showing the BFS traversal from vertex s.
Traverse/search graphs: BFS

- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] =$ number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.

![Diagram of a graph showing BFS traversal](image-url)
Traverse/search graphs: BFS

- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] =$ number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.

![Graph diagram]

0 1
Traverse/search graphs: BFS

- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] = \text{number of edges from } s \text{ to } v$. If v not reachable from s, we have $d[v] = \infty$.

```
\begin{align*}
\text{s} & \rightarrow \text{b} \\
\text{a} & \rightarrow \text{b} \\
\text{f} & \rightarrow \text{e} \\
\text{g} & \rightarrow \text{h} \\
\text{c} & \rightarrow \text{d} \\
\end{align*}
```
• **BFS = breadth-first search.**

• **Start in a given vertex s, find all reachable vertices from s**
 - proceed in waves
 - computes $d[v] =$ number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.

Traverse/search graphs : BFS

BFS

- use a queue to store processed vertices
 - for each vertex in the queue, follow adj matrix to get vertices of the next wave

```plaintext
BFS(V,E,s)
for each vertex v≠s, set d[v]=∞
init queue Q; enqueue(Q,s) //puts s in the queue
while Q not empty
  u = dequeue(Q) // takes the first elem available from the queue
  for each vertex v ∈ Adj[u]
    if (d[v]==∞) then
      d[v]=d[u]+1
      Enqueue(Q,v)
    end if
  end for
end while
```

- Running time $O(V+E)$, since each edge and vertex is considered once.
Traverse/search graphs: DFS

- **DFS = depth-first search**
 - once a vertex is discovered, proceed to its adj vertices, or "children" (depth) rather than to its "brothers" (breadth)

DFS-wrapper(V,E)
- foreach vertex u∈V {color[u] = white} end for //color all nodes white
- foreach vertex u∈V
 - if (color[u]==white) then DFS-Visit(u)
- end for

DFS-Visit(u) //recursive function
- color[u] = gray; //gray means "exploring from this node"
- time++; discover_time[u] = time; //discover time
- for each v ∈ Adj[u]
 - if (color[v]==white) then DFS-Visit(v) //explore from u
- end for
- color [u] = black; finish_time[u]=time; //finish time
DFS

<table>
<thead>
<tr>
<th>discovery time</th>
<th>finish time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Not discovered, exploring from it

Finished

A → B → C
D → E → F → G → H
Discovered: DFS

- **Init:** Color all nodes "not discovered"/white
- **Discovery Time:** 2, **Finish Time:** 7

Diagram:
- Nodes A, B, C, D, E, F, G, H
- Connections between nodes

Legend:
- White: Not discovered
- Gray: Discovered, exploring from it
- Black: Finished
DFS

Init: color all nodes "not discovered"/white
1. DFS-visit(A): discover A, color A gray

<table>
<thead>
<tr>
<th>discovery time</th>
<th>finish time</th>
<th>not discovered</th>
<th>discovered, exploring from it</th>
<th>finished</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DFS-visit(A)

DFS-visit(B)

DFS-visit(C)

DFS-visit(D)

DFS-visit(E)

DFS-visit(F)

DFS-visit(G)

DFS-visit(H)
DFS

Init: color all nodes "not discovered", white
1. DFS-visit(A): discover A, color A gray
2. Discover D from A, color D gray

Init: color all nodes "not discovered", white
1. DFS-visit(A): discover A, color A gray
2. Discover D from A, color D gray
init: color all nodes "not discovered"/white
1. DFS-visit(A): discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
DFS

<table>
<thead>
<tr>
<th>discovery time</th>
<th>finish time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

init: color all nodes "not discovered", white
1. DFS-visit(A): discover A, color A gray
2. Discover D from A, color D gray
3. Discover E from D, color E gray
4. Finish E, color E black, return to D
DFS

![DFS Algorithm Diagram]

- **Init:** Color all nodes "not discovered"/white
- 1. **DFS-visit(A):** discover A, color A gray
- 2. Discover D from A, color D gray
- 3. Discover E from D, color E gray
- 4. Finish E, color E black, return to D
- 5. Discover F from D, color F gray
DFS

1. Init: color all nodes "not discovered"/white.
2. DFS-visit(A): discover A, color A gray.
3. Discover D from A, color D gray.
4. Discover E from D, color E gray.
5. Finish E, color E black, return to D.
6. Discover F from D, color F gray.
7. Finish F, color F black, return to D.

DFS-visit(A)

- **Discover** node A, color A gray.
- **Discover** node D from A, color D gray.
- **Discover** node E from D, color E gray.
- Finish node E, color E black, return to D.
- Discover node F from D, color F gray.
- Finish node F, color F black, return to D.
Init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
4. finish E, color E black, return to D
5. discover F from D, color F gray
6. finish F, color F black, return to D
7. finish D, color D black, return to A
Init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray
2. Discover D from A, color D gray
3. Discover E from D, color E gray
4. Finish E, color E black, return to D
5. Discover F from D, color F gray
6. Finish F, color F black, return to D
7. Finish D, color D black, return to A
8. Discover B from A, color B gray

DFS-visit(A)

<table>
<thead>
<tr>
<th>discovery time</th>
<th>finish time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

DFS

A

B

C

D

E

F

G

H
DFS

1. Init: color all nodes “not discovered”/white
2. DFS-visit(A): discover A, color A gray
3. Discover D from A, color D gray
4. Discover E from D, color E gray
5. Finish E, color E black, return to D
6. Discover F from D, color F gray
7. Finish F, color F black, return to D
8. Finish D, color D black, return to A
9. Discover B from A, color B gray
10. Discover G from B, color G gray

<table>
<thead>
<tr>
<th>discovery time</th>
<th>finish time</th>
<th>not discovered</th>
<th>discovered, exploring from it</th>
<th>finished</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
DFS

init: color all nodes “not discovered”, white
1. DFS-visit(A): discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
4. finish E, color E black, return to D
5. discover F from D, color F gray
6. finish F, color F black, return to D
7. finish D, color D black, return to A
8. discover B from A, color B gray
9. discover G from B, color G gray
10. finish G, color G black, return to B
DFS

DFS-visit(A):
1. discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
4. finish E, color E black, return to D
5. discover F from D, color F gray
6. finish F, color F black, return to D
7. finish D, color D black, return to A
8. discover B from A, color B gray
9. discover G from B, color G gray
10. finish G, color G black, return to B
11. finish B, color B black, return to A

Init: color all nodes “not discovered”, white

A

B 8 11

C

D 2 7

E 3 4

F 5 6

G 9 10

H

Not discovered

Finished
DFS

1. Initialize color all nodes "not discovered"/white
2. **DFS-visitA(A):** discover A, color A gray
3. Discover D from A, color D gray
4. Discover E from D, color E gray
5. Finish E, color E black, return to D
6. Discover F from D, color F gray
7. Finish F, color F black, return to D
8. Finish D, color D black, return to A
9. Discover B from A, color B gray
10. Discover G from B, color G gray
11. Finish G, color G black, return to B
12. Finish B, color B black, return to A
13. Finish A, color A black, done DFS-visitA

Discovered, exploring from it

- A
- B
- D
- E
- F
- G
- H

Not discovered

- C

Discovery time

- A: 1
- B: 8
- C: 9
- D: 2
- E: 3
- F: 5
- G: 6
- H: 7

Finish time

- A: 12
- B: 11
- C: 10
- D: 7
- E: 4
- F: 6
- G: 10
- H: 0
DFS

init: color all nodes "not discovered"/white
1. DFS-visit(A): discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
 - finish E, color E black, return to D
4. discover F from D, color F gray
 - finish F, color F black, return to D
5. finish D, color D black, return to A
6. discover B from A, color B gray
7. discover G from B, color G gray
 - finish G, color G black, return to B
8. finish B, color B black, return to A
9. finish A, color A black, done DFS-visit(A)
10. DFS-visit(C), discover C, color C gray

DFS-visit(A)
DFS-visit(C)
DFS

```
1. init: color all nodes “not discovered”, white
2. DFS-visit(A):
   1. discover A, color A gray
   2. discover D from A, color D gray
   3. discover E from D, color E gray
   4. finish E, color E black, return to D
   5. discover F from D, color F gray
   6. finish F, color F black, return to D
   7. finish D, color D black, return to A
   8. discover B from A, color B gray
   9. discover G from B, color G gray
  10. finish G, color G black, return to B
  11. finish B, color B black, return to A
  12. finish A, color A black, done DFS-visit(A)
   13. DFS-visit(C):
   1. discover C, color C gray
   2. discover H from C, color H gray
   3. finish H, color H black, return to C
   4. finish C, color C black, return to C
   5. finish C, color C black, done DFS-visit(C)
```

Diagram:

```
DFS-visit(A) DFS-visit(C)
```
DFS

Init: color all nodes "not discovered"/white
1. DFS-visit(A): discover A, color A gray
2. Discover D from A, color D gray
3. Discover E from D, color E gray
4. Finish E, color E black, return to D
5. Discover F from D, color F gray
6. Finish F, color F black, return to D
7. Finish D, color D black, return to A
8. Discover B from A, color B gray
9. Discover G from B, color G gray
10. Finish G, color G black, return to B
11. Finish B, color B black, return to A
12. Finish A, color A black, done DFS-visit A
13. DFS-visit(C): discover C, color C gray
14. Discover H from C, color H gray
15. Finish H, color H black, return to C
DFS

1. DFS-visit(A): discover A, color A gray
2. discover D from A, color D gray
3. discover E from D, color E gray
4. finish E, color E black, return to D
5. discover F from D, color F gray
6. finish F, color F black, return to D
7. finish D, color D black, return to A
8. discover B from A, color B gray
9. discover G from B, color G gray
10. finish G, color G black, return to B
11. finish B, color B black, return to A
12. finish A, color A black, done DFS-visit(A)
13. DFS-visit(C): discover C, color C gray
14. discover H from C, color H gray
15. finish H, color H black, return to C
16. finish C, color C black, finish DFS-visit(C)
DFS edge classification

- “tree” edge: from vertices gray to white
 - a tree edge advances the graph exploration/traversal

- “back” edge: from vertices gray to gray
 - a back edge points to a cycle within the current exploration nodes

- “forward” edge: from vertices \(a\) (gray) to \(b\) (black), if \(a\) discovered first
 - \(\text{discovery_time}[a] < \text{discovery_time}[b]\)
 - points to a different part of the tree, already explored from \(a\)

- “cross” edge: from vertices \(a\) (gray) to \(b\) (black), if \(b\) discovered first
 - \(\text{discovery_time}[a] > \text{discovery_time}[b]\)
 - points to a different part of the tree, explored before discovering \(a\)
Checkpoint

• on the animated example, label each edge as "tree", "back", "cross", or "forward"

• do the same on the following example (DFS discovery and finish times marked for each node)
• almost same example, with a small modification: one edge was reversed
DFS observations

- Running time $O(V+E)$, same as BFS
- Vertex v is gray between times $\text{discover}[v]$ and $\text{finish}[v]$
- Gray time intervals $(\text{discover}[v], \text{finish}[v])$ are inclusive of each other
 - $(d[v], f[v])$ can include $(d[u], f[u]) : d[v] < d[u] < f[u] < f[v]$
 - $(d[v], f[v])$ can separate from $(d[u], f[u]) : d[v] < f[v] < d[u] < f[u]$
 - $(d[v], f[v])$ cannot intersect $(d[u], f[u]) : d(v) < d(u) < f[v] < f[u]$

- Graph $G=(V,E)$ is acyclic (does not have cycles) if DFS does not find any “back” edge
Undirected graphs cycles

- graph $G=(V,E)$ is acyclic (does not have cycles) if DFS does not find any "back" edge
- since G is undirected, no cycles implies $|E| \leq |V|-1$
- running DFS, if we find more than $|V|-1$ edges, there must be a cycle
- Undirected graphs: find-cycles algorithm takes $O(V)$
Directed graphs cycles

- graph $G=(V,E)$ is acyclic (does not have cycles) if DFS does not find any “back” edge
- for directed graphs, even without cycles they can have more edges, $|E| > |V|-1$
- algorithm to determine cycles: run DFS, look for back edges - $O(V+E)$ time
- DAG = directed acyclic graph
Topological sort

- DAG admits topological sort: all vertices “sorted” on a line, such that all edges point from left to right—no cycles — 2 graphs below are the same—

- to do this: algorithm: run DFS, time $O(V+E)$. Output vertices in reverse order given by finishing time
Check Point

- how can we use DFS to determine if there is a path from u to v?

- prove that by sorting vertices in the reverse order of finishing times, we obtained a topological sort
 - assuming no cycles
 - in other words, all edges point in the same direction
Strongly connected components

- SCC = a set of vertices $S \subseteq V$, such that for any two $(u, v) \in S$, graph G contains a path $u \leadsto v$ and a path $v \leadsto u$

- trivial for undirected graphs
 - all connected vertices are in fact strongly connected

- tricky for directed graphs

- graph below has the DFS discover/finish times and marked 4 strongly connected components; “tree” edges highlighted

- between two SCC, A and B, there cannot exists paths both ways $(A \ni u \leadsto v \in B$ and $B \ni v' \leadsto u' \in A)$
 - paths both ways would make A and B a single SCC
Strongly connected components

- run 1st DFS on G to get finishing times $f[u]$
- run 2nd DFS on G-reversed (all edges reversed -see picture), each DFS-visit in reverse order of $f[u]$
 - finishing times marked in red for the DFS-visit root vertices
- output each tree (vertices reached) obtained by 2nd DFS as an SCC
Strongly connected components

- why 2nd DFS produces precisely the SCC -s?
- SCC-graph of G: collapse all SCC into one SCC-vertex, keep edges between the SCC-vertices
 - SCC graph is a DAG;
 - contradiction argument: a cycle on the SCC-graph would immediately collapse the cycle's SCC-s into one SCC
- reversed edges (shown in red); reversed-SCC-graph also a DAG
- second DFS runs on reversed-edges (red); once it starts at a high-finish-time (like 16) it can only go through vertices in the same SCC (like abe)
Minimum Spanning Trees
Lesson 2
Spanning Trees

- **context**: undirected graphs
- **a set of edges** A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size $= |V|-1$
- **spanning tree**: the tree formed by the set of spanning edges together with vertex set $T = (V,F)$
Spanning Trees

- context: undirected graphs
- a set of edges A that “span” or “touch” all vertices, and forms no cycles
 - necessary this set of edges A has size $= |V|-1$

- spanning tree: the tree formed by the set of spanning edges together with vertex set $T = (V,F)$

A spanning tree
Spanning Trees

- context: undirected graphs
- a set of edges A that “span” or “touch” all vertices, and forms no cycles
 - necessary, this set of edges A has size $|V|-1$
- spanning tree: the tree formed by the set of spanning edges together with vertex set $T = (V, F)$
Minimum Spanning Tree (MST)

- **context**: undirected graph, edges have weights
 - edge \((u,v) \in E\) has weight \(w(u,v)\)

- MST is a spanning tree of minimum total weight (of its edges)
 - must span all vertices
 - exactly \(|V|-1\) edges
 - sum of edges weight be minimum among spanning trees
Growing Minimum Spanning Trees

- “safe edge” \((u,v)\) for a given set of edges \(A\): there is a MST that uses \(A\) and \((u,v)\)
 - that MST may not be unique

- GENERIC-MST \((G)\)
 - \(A\) = set of tree edges, initially empty
 - while \(A\) does not form a spanning tree // meaning while \(|A| < |V|-1\)
 - find edge \((u,v)\) that is safe for \(A\)
 - add \((u,v)\) to \(A\)
 - end while

- how to find a safe edge to a given set of edges \(A\)?
 - Prim algorithm
 - Kruskal algorithm
Cuts in the graph

- "cut" is a partition of vertices in two sets: $V=S \cup V-S$
- An edge (u,v) crosses the cut $(S,V-S)$ if u and v are on different partitions (one in S the other in $V-S$)
- Cut $(S, V-S)$ respects set of edges A if A has no cross edge
- "Min weight cross edge" is a cross edge for the cut, having minimum weight across all cross edges
- Cut Theorem: if A is a set of edges part of some MST, and $(S,V-S)$ a cut respecting A, then a min-weight cross edge is "safe" for A (can be added to A towards an MST)

- $A\{ab, ic, cf, hg, fg\}$
- cut: $S\{a, b, d, e\}$ $V-S\{h, i, c, g, f\}$ respects A
- Safe crossing edge: cd, weight$(cd)=7$
Prim algorithm

- grows a single tree \(A \), \(S = \) set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
Prim algorithm

- grows a single tree A, $S =$ set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut $(S, V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
Prim algorithm

- grows a single tree A, $S =$ set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut $(S,V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge gf in the picture is added to A, vertex g added to the tree
Prim algorithm

• grows a single tree A, $S =$ set of vertices in the tree
 — as opposed to a forest of smaller disconnected trees

• add a safe edge at a time
 — connecting one more node to the current tree

• define cut $(S,V-S)$, which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 — edge gf in the picture is added to A, vertex g added to the tree
Prim algorithm

- add another(next) safe edge
 - connecting one more node to the current tree
Prim algorithm

• add another(next) safe edge
 - connecting one more node to the current tree

• define cut \((S, V-S)\), which respects \(A\). Using the cut theorem, the min-weight edge across the cut is the next edge added to \(A\)
Prim algorithm

- add another (next) safe edge
 - connecting one more node to the current tree

- define cut \((S, V-S)\), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge hg in the picture is added to A, vertex h added to the tree
Prim algorithm

- add another (next) safe edge
 - connecting one more node to the current tree
- define cut \((S,V-S)\), which respects \(A\). Using the cut theorem, the min-weight edge across the cut is the next edge added to \(A\)
 - edge \(hg\) in the picture is added to \(A\), vertex \(h\) added to the tree
Prim MST algorithm

- **Prim simple**
 - but implementation a bit tricky

- **Running Time depends on implementation of Extract-Min from the Queue**
 - best theoretical implementation uses Fibonacci Heaps
 - also the most complicated
 - only makes a practical difference for very large graphs

```
MST-PRIM(G, w, r)
1 for each u ∈ G.V
2    u.key = ∞
3    u.π = NIL
4 r.key = 0
5 Q = G.V
6 while Q ≠ ∅
7    u = EXTRACT-MIN(Q)
8 for each v ∈ G.Adj[u]
9    if v ∈ Q and w(u, v) < v.key
10       v.π = u
11       v.key = w(u, v)
```
Kruskal MST algorithm

- Grows a forest of trees $\text{Forrest} = (V,A)$
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
Kruskal MST algorithm

- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
Kruskal MST algorithm

- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty

- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
Kruskal MST algorithm

- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty

- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees $T_1\ni v$ and $T_2\ni u$ (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut $(S,V-S)$; $S =$ vertices of T_1 (in red). This cut respects set A
Kruskal MST algorithm

- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty

- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A
 - edge (u,v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree
Kruskal algorithm

MST-KRUSKAL\((G, w) \)

1. \(A = \emptyset \)
2. for each vertex \(v \in G.V \)
 3. MAKE-SET\((v) \)
4. sort the edges of \(G.E \) into nondecreasing order by weight \(w \)
5. for each edge \((u, v) \in G.E \), taken in nondecreasing order by weight
 6. if FIND-SET\((u) \neq \) FIND-SET\((v) \)
 7. \(A = A \cup \{(u, v)\} \)
 8. UNION\((u, v) \)
6. return \(A \)

- Kruskal is simple
- implementation and running time depend on FIND-SET and UNION operations on the disjoint-set forest.
 - chapter 21 in the book, optional material for this course
- running time \(O(E \log V) \)
MST algorithm comparison

- if you know graph density (edges to vertices)

<table>
<thead>
<tr>
<th></th>
<th>Kruskal</th>
<th>Prim with array implement.</th>
<th>Prim w/ binomial heap</th>
<th>Prim w/ Fibonacci heap</th>
<th>in practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>sparse graph</td>
<td>O(VlogV)</td>
<td>O(V²)</td>
<td>O(VlogV)</td>
<td>O(VlogV)</td>
<td>Kruskal, or Prim+binom heap</td>
</tr>
<tr>
<td>E=O(V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dense graph</td>
<td>O(V²logV)</td>
<td>O(V²)</td>
<td>O(V²logV)</td>
<td>O(V²)</td>
<td>Prim with array</td>
</tr>
<tr>
<td>E=Θ(V²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg density</td>
<td>O(Vlog²V)</td>
<td>O(V²)</td>
<td>O(Vlog²V)</td>
<td>O(VlogV)</td>
<td>Prim with Fib heap, if graph is large</td>
</tr>
<tr>
<td>E=Θ(VlogV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>