CS1800 Discrete Structures Practice Final

Instructions:

1. The exam is closed book and closed notes. You may not use a calculator or any other electronic device.

2. This is a two-hour exam worth 200 pts total. The points for each problem vary and are given in the problem statement.

3. Please look through the entire exam and verify that you have all pages numbered 1 through 14.

4. You should write your answers in the space provided; use the back sides of these sheets, if necessary.

5. Good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>22</td>
</tr>
<tr>
<td>Problem 2</td>
<td>21</td>
</tr>
<tr>
<td>Problem 3</td>
<td>16</td>
</tr>
<tr>
<td>Problem 4</td>
<td>12</td>
</tr>
<tr>
<td>Problem 5</td>
<td>21</td>
</tr>
<tr>
<td>Problem 6</td>
<td>24</td>
</tr>
<tr>
<td>Problem 7</td>
<td>30</td>
</tr>
<tr>
<td>Problem 8</td>
<td>12</td>
</tr>
<tr>
<td>Problem 9</td>
<td>18</td>
</tr>
<tr>
<td>Problem 10</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>

Name: ____________________________ NU ID#: ____________________________
Problem 1 [22 pts, (6.8.8)]: Decimal, Binary, Hex

(a) Fill in this table with the missing decimal, binary, or hexadecimal representations of the given numbers.

<table>
<thead>
<tr>
<th>decimal</th>
<th>binary</th>
<th>hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10101010</td>
<td>D9</td>
</tr>
</tbody>
</table>

(b) Fill in the table below with the 8-bit two’s complement representation of the given decimal integers.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Two’s Complement</th>
<th>Decimal</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>−35</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>−92</td>
<td></td>
</tr>
</tbody>
</table>

(c) What is the smallest number of bits that can be used to represent all the numbers described in each of the following:

 i. The integers from 0 to 1000 as unsigned (positive) binary numbers.

 ii. The integers from 0 to 1,000,000 as unsigned (positive) binary numbers.

 iii. The integers from −1000 to +1000 in twos-complement.

 iv. The hexadecimal numbers from 0000 to FFFF as positive binary integers.
Problem 2 [21 pts, (4,10,4,3]): Modular Arithmetic
Evaluate the following. Show your work.

i. 52 mod 7 =

\[-52 \mod 7 =\]

ii. 180 mod 13 =

\[180^2 \mod 13 =\]

\[180^4 \mod 13 =\]

\[180^8 \mod 13 =\]

\[180^{12} \mod 13 =\]
iii. Find the multiplicative inverse of 180 mod 13. That is, find an integer x such that $0 \leq x < 13$ and $180 \cdot x \mod 13 = 1$.

iv. If n is any integer greater than 100, then $(n - 2)^6 \mod n =$
Problem 3 [16 pts, (4 each)]: Truth Tables, Boolean Formulae, and Circuits

Fill in the following table with the missing truth tables, Boolean formulae, and circuits.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Boolean Formula</th>
<th>Truth Table</th>
</tr>
</thead>
</table>
| | $A \land B \land C$ | $\begin{array}{c|ccc|c}
A & B & C & Out \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}$ |
Problem 4 [12 pts, (4 each)]: Prime Factorization

Give the prime factorization of each of the following integers. Write your answers in standard exponential form with prime factors in increasing order, e.g., $200 = 2^3 \cdot 5^2$.

i. 3250

ii. $4^4 \cdot 6^6$

iii. $\frac{12!}{9! \cdot 3!}$
Problem 5 [21 pts, (6,6,9)]: gcd, lcm, Euclidean Algorithm
(a) Find the gcd or lcm as indicated. These should be easy and done without the Euclidean algorithm.

i. gcd(4800, 44)

 ii. lcm(512, 7)

(b) Use the Euclidean algorithm to find gcd(288, 180). You must show your work.

(c) Let p and q be prime numbers with $p < q$. Evaluate the following.

i. gcd($p \cdot q!, q \cdot p!$)

 ii. gcd($p^2 q^5, p^3 q^4$)

 iii. lcm($p^2 q^5, p^3 q^4$)
Problem 6 [24 pts, (12,12)]: Sets, Set Operations, Venn Diagrams.

(a) Recall that \(\mathbb{N} \) is the set of natural numbers 0, 1, 2, \(\ldots \). In each of the following, show the set indicated by giving all of its elements, for example, \(\{ n \in \mathbb{N} \mid 1 < n < 5 \} = \{2, 3, 4\} \).

i. \(\{ n \in \mathbb{N} \mid n^2 = k + 1 \text{ for some } k \in \mathbb{N} \text{ such that } 1 \leq k \leq 10 \} \)

ii. \(\mathcal{P}(S) \), the power set of \(S \), where \(S \) is the set \(\{ n \in \mathbb{N} \mid 1 \leq n \leq 10 \text{ and } n \mod 3 = 2 \} \)

iii. \(S \times S \) where \(S \) is the set \(\{ n \in \mathbb{N} \mid 1 \leq n \leq 6 \text{ and } \gcd(n, 4) = 1 \} \)

(b) Sets \(A, B, \) and \(C \) are shown in the Venn diagrams below. For each part, color in the set indicated in the diagram to the right.

i. \(A \cup \overline{B} \)

ii. \((A \cup B) \cap \overline{C} \)

iii. \(\overline{A \cup C} \cap (B \cup C) \)
Problem 7 [30 pts, (3 each)]: Counting and Probability.

When my son visits for the holidays, we like to catch up on some of the TV series that me didn’t have time for during our academic semesters. This year, we plan to devote a few evenings to watching episodes of Bones and Castle. There are 5 seasons of Bones and 2 seasons of Castle available for instant download through Netflix. (There are a total of 106 episodes of Bones and 36 episodes of Castle.)

<table>
<thead>
<tr>
<th>Bones</th>
<th>Bones</th>
<th>Bones</th>
<th>Bones</th>
<th>Bones</th>
</tr>
</thead>
<tbody>
<tr>
<td>season 1</td>
<td>season 2</td>
<td>season 3</td>
<td>season 4</td>
<td>season 5</td>
</tr>
<tr>
<td>22 episodes</td>
<td>21 episodes</td>
<td>15 episodes</td>
<td>26 episodes</td>
<td>22 episodes</td>
</tr>
<tr>
<td>Castle</td>
<td>Castle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>season 1</td>
<td>season 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 episodes</td>
<td>26 episodes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In parts (i) through (iv) below, give an answer in terms of permutations \(P(n, k) \) and/or combinations \(C(n, k) \) and then as a factorial or ratio of factorials or ratio of products and sums of integers.

i. On Monday, we plan to watch one episode from each season of Bones, first from season 1, then from season 2, and so on. How many ways can we do this?

ii. On Tuesday, we plan to watch 6 different episodes of Castle, one after another. In how many ways can we pick an ordered list of 3 different episodes from season 1 of Castle followed by an ordered list of 3 different episodes from season 2 of Castle?

iii. On Wednesday, my son will pick 7 different episodes (out of all 142) to play in order. I will be late so I’ll miss the first one. I also know that I really can’t sit around watching TV that long so I plan to leave and go to the gym while the last of the 7 episodes is playing. How many different lists of 7 episodes can my son choose such that I won’t miss any episodes of Castle?

iv. On Thursday, my son wants to choose 10 episodes of Castle to write about in his blog. He wants to include at least one episode from each season. How ways can he choose the 10 episodes?
v. Each episode of Bones runs for about an hour, and I would like to watch each of the 106 episodes during the next 6 weeks.

I am trying to make up a schedule giving the number of episodes I will watch each of the 6 weeks. Here is one example of a schedule.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>37</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

How many different schedules are there?

What is the largest number \(N \) such that I know that I must watch at least \(N \) episodes during one of those weeks?

vi. After my son leaves on Saturday, I plan to randomly choose one episode to watch over lunch. There are three ways that I might do this. For each way, give the probability that the episode I choose is the 100th episode of Bones. (This is in season 5.)

I choose one episode at random from the 142 episodes.

I choose one of the 7 seasons (5 of Bones and 2 of Castle) at random and then choose an episode at random from that season.

I toss a fair coin to decide between Bones and Castle then choose a season at random and then choose an episode at random.

vii. Now suppose I select two episodes at random (without replacement) from the set of all 142 episodes. What is the probability that one of the two episodes is from Castle, given the condition that at least one of the two selected episodes is from Bones.
Problem 8 [12 pts, (6,6)]: Summations

i. Evaluate the following sum. To obtain full credit, your answer must be in the form of a single (correct) integer, and you must show your work.
\[\sum_{k=4}^{27} (3k + 2) = \]

ii. Derive a formula in terms of \(a \) and \(n \) for the following sum. You must show your work.
\[\sum_{k=1}^{n} 2^{k+3} = \]
Problem 9 [18 pts, (9,9)]: Mathematical Induction

i. Prove the following statement by mathematical induction, for all integers $n \geq 1$.

\[\sum_{i=1}^{n} i(i + 1) = \frac{n(n + 1)(n + 2)}{3}. \]
ii. Using mathematical induction prove that $11^n - 6$ is divisible by 5 for all positive integers n.
Problem 10 [24 pts, (4 each)]: Graphs
Refer to the graph below for the following problems.

i. Show the adjacency list representation for this graph, where the vertices are ordered alphabetically and each adjacency list is also ordered alphabetically.

ii. Give the longest path that does not cross itself from vertex D to vertex G.

iii. List the vertices (separated by spaces) in the order they are visited in a Depth First Search that starts at vertex B. (Assume that DFS processes vertices alphabetically, when given the option of multiple vertices to explore.)
iv. Give the path that is found from vertex B to vertex A using a Depth First Search that starts at vertex B. (Assume that DFS processes vertices alphabetically, when given the option of multiple vertices to explore.)

v. List the vertices (separated by spaces) in the order they are visited in a Breadth First Search that starts at vertex B. (Assume that BFS processes vertices alphabetically, when given the option of multiple vertices to explore.)

vi. Give the path that is found from vertex B to vertex A using a Breadth First Search that starts at vertex B. (Again assume that BFS processes vertices alphabetically, when given the option of multiple vertices to explore.)