
CS 2500 Exam 1 – Fall 2012

Name:

Student Id (if known):

Section (Shivers/Vona/Razzaq/Ahmed):

• Write down the answers in the
space provided.

• You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

• The phrase “design this func-
tion/program” means that you
should apply the design recipe.
You are not required to provide
a template unless the problem
specifically asks for one. Be
prepared, however, to struggle with
the development of function bodies
if you choose to skip the template
step.

• To save time writing, you may write
(sqr 3) → 9

instead of
(check-expect (sqr 3) 9)

• Some basic test taking advice:
Before you start answering any
problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!

Problem Points /out of
1 / 6
2 / 6
3 / 7
4 / 17
5 / 11
6 / 11

Total / 58

6 POINTSProblem 1 You and your homework partner have decided to start a software com-
pany writing apps for smartphones. Your first application is a dinner-check calcu-
lator. The application consumes the bill for dinner b, the number of diners d, and
the tip t (expressed as a fraction, e.g., 0.15, for a fifteen-percent tip). It produces
the amount each diner should pay:

b× (1 + t)

d
.

Please design this program.

2

6 POINTSProblem 2 Write the step-by-step computation that would be taken if you ran this
program in the DrRacket Stepper. Besides showing the intermediate terms of the
computation, label each step as either:

• arith: Primitive “arithmetic” (of any form, not just numeric operations)

• plug: Function application—“plugging in”

• conditional: A conditional step.

(require 2htdp/image)

(define (f n)

(cond [(> n 5) (sqr (- n 2))]

[else (+ n 3)]))

(f (* 3 2))

3

7 POINTSProblem 3 Prof. Shivers found the following data definition scribbled on a sheet
of paper shoved under his office door:

(define-struct frobboz (a b))

(define-struct frabble (b c))

;;; A Foo is one of:

;;; - a symbol

;;; - (make-frobboz Foo Number)

;;; - (make-frabble Boolean Foo)

He’s been struggling to write a template for a program that consumes a Foo.
Please write it for him.

4

17 POINTSProblem 4 It’s an election year, and politics is on everyone’s mind. In the run-up
to the November elections, you’ve been hired as a consultant for a major politi-
cal candidate. They keep track of campaign donations using the following data
definition:

(define-struct donation (donor amount))

;;; A Donation is one of:

;;; - Number

;;; - (make-donation String Number)

;;; Where a simple number represents an anonymous donation.

;;;

;;; A LOD (list of donations) is one of:

;;; - empty

;;; - (cons Donation LOD)

The rules of campaign donation declare that a single contributor may only do-
nate $2500 to a given campaign. Furthermore, anonymous donations are limited
to $50.

The first task you are given is to design a program, any-bad-donations?,
that will consume a list of donations and return true if any of the donations on the
list are illegal ones.

To make things simpler, you should first design a helper function, bad-donation?,
that answers this question for a single donation.

5

Here is a blank page for you to use, if you need it.

6

11 POINTSProblem 5 Some unscrupulous special-interest groups are attempting to get around
the laws on campaign donations (see the previous problem) by making multiple
donations. For example, the wealthy but unscrupulous donor "Vona" might try to
make two donations of $2500 each:

(cons (make-donation "Vona" 2500)

(cons (make-donation "Vona" 2500)

...))

Design a program, donor-total, that will consume the name of a donor and a
LOD, and produce the total amount donated by that donor. For example, it would
tell us that the total amount donated by donor "Vona", given the LOD above, is
$5000 (which clearly violates donation limits).

7

Here is a blank page for you to use, if you need it.

8

11 POINTSProblem 6 Back in September, your roommate built a little web service, “Husky-
Book,” allowing students to post updates about their lives, link to friends, and
comment on each other. Now he’s decided to scale it up and offer it as a service
to users outside the university. While you’re convinced this is an idiotic notion—
nobody could be narcissistic enough to enjoy wasting hours of their day, every
day, posting the minutiae of their daily lives for the the world to see—he is, after
all, your roommate, and you feel obligated to help him out. (He’s offered you
15% of the company for your coding help. Whatever.)

The HuskyBook site permits users to comment on each other’s posts (narcis-
sism squared!). Each comment is represented by a structure storing the name of
the user who made the comment and the text of the comment. For every original
post, we keep a list of these comments.

;;; A Comment is a (make-comment String String)

(define-struct comment (name text))

;;; A LOC (list of comments) is one of:

;;; - empty

;;; - (cons Comment LOC)

For example, if user Leena made a post on her HuskyBook page saying she’d
made a 93 on a major test, an hour or so later, this post might have accumulated
this list of comments from her friends:

(cons (make-comment "Olin" "Yahoo! You go, girl!")

(cons (make-comment "Amal"

"I failed -- try again in the Spring. :-(")

(cons (make-comment "Marty" "Big deal. I made a 96.")

empty)))

HuskyBook allows users to de-friend one another. For example, user Leena might
want to de-friend her obnoxious “friend” Marty. It would be nice if, once a user
has decided to de-friend someone, all the comments made by the former friend
could be made to go away. For example, if Leena de-friended Marty, we’d want
to turn the comment list above into

(cons (make-comment "Olin" "Yahoo! You go, girl!")

(cons (make-comment "Amal"

"I failed -- try again in the Spring. :-(")

empty))

9

Design a program, defriend-comments, that consumes a string naming a former
friend, and a list of comments, and produces the input list without any comments
made by the former friend.

10

