
CS2500 Exam 2 — Fall 2011

Name:

Student Id (last 4 digits):

Section (morning, honors or afternoon):

• Write down the answers in the
space provided.

• You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

• You may write c → e in place
of (check-expect c e) to save
time writing. You may also
write the Greek letter λ instead of
lambda, to save writing.

• Some basic test taking advice: (1)
Before you start answering any
problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.
(2) Write your name at the top of
every page. . . just in case the staples
come out of your completed test.
(This happens.)

Good luck!

Problem Points /out of
1 / 15
2 / 10
3 / 12
4 / 10
5 / 20
6 / 9
7 / 14

Total / 90



15 POINTSProblem 1 Suppose we are processing a collection of rectangles, where rectan-
gles are given with the following data definition:

;;; A Rectangle is a (make-rect Number Number)

(define-struct rect (width height))

We’d like to search a list of rectangles to select out all the squares in the list (that
is, the rectangles that are as wide as they are high).

• Design a function, all-squares, that takes a list of rectangles, and pro-
duces a list of all the square rectangles in the lists. Do not use loop func-
tions.

• Now rewrite the function using loop functions.

2



[Here is some more space for the previous problem.]

3



10 POINTSProblem 2 Wait, we’re not done with lists of rectangles yet. We need a function,
flip-rectangles, that will take a list of rectangles and “flip” each one, swap-
ping its width with its height. For example, the rectangle (make-rect 3 8) in
the input list would become the rectangle (make-rect 8 3) in the output list.

Design this function using loop functions.

4



12 POINTSProblem 3 The function number-winners takes a list and a test function, and
returns the number of “winners” in the list—that is, the number of items in the
input list that cause the test function to return true. Some examples:

(number-winners even? (list 2 5 2 7 9 1 4)) ; => 3

(number-winners string? (list 0 "a" 3 1 "b" 7)) ; => 2

Design this function using any loop function you like. . . except filter.

5



10 POINTSProblem 4 Recall from class1 our representation of numeric sets with lists:

;;; An NSet (set of numbers) is a [Listof Number]

;;; - Order of elements is unimportant, of course.

;;; - No repeats allowed: a number may appear in the list

;;; at most once.

Set subtraction, written A − B, is the set of all elements in set A that are not in
set B. For example,

{1, 2, 3, 4, 5, 6} − {2, 4, 6} = {1, 3, 5}

Design the set-subtraction function set- using a loop function. You may as-
sume the function contains? has already been written (after all, we did it in
class2). So you can use contains? in your solution without having to write it
yourself:

;;; NSet Number -> Boolean

;;; Does the set contain the number?

(define (contains? set num) ...) ; Already written for you.

1Assuming you’ve been attending classes, that is.
2Assuming you’ve been attending classes, that is.

6



[Here is some more space for the previous problem.]

7



20 POINTSProblem 5 You have a summer job developing code at a company that uses a
cheap, cut-rate Scheme system, PowerSkeem!3 The bad news is that PowerSkeem!,
among many other problems, doesn’t have the map or filter functions. The par-
tial good news is that it does have a foldr function.

It’s going to take you some time to convince your boss to switch over to
Dr. Racket. In the meantime, you’d like to program using map and filter. So
you need to define them first. Fortunately, you’re sophisticated enough to realize
that you can write both map and filter rather compactly using foldr.

Your task: Design map and filter using foldr. You may use lambda or
local, if needed.

3Written by the CEO’s nephew. Welcome to the working world.

8



[Here is some more space for the previous problem.]

9



9 POINTSProblem 6 The natural numbers (integers greater than or equal to zero) can be
described by a recursive-union data definition, much like lists:

;; A Natural is one of:

;; - 0

;; - (add1 Natural)

Just as we can design “loop” functions for lists, we can do the same for natural
numbers. Consider the following “foldr” analog for natural numbers:

(define (nat-foldr op base nat)

(cond [(zero? n) base]

[else (op nat

(nat-foldr op base (sub1 nat)))]))

Now consider the following recursive function on natural numbers:

;; factorial : Natural -> Natural

;; Compute n! = 1 * 2 * ... * n-1 * n.

;; (As a special case, 0! = 1.)

(define (factorial n)

(cond [(zero? n) 1]

[else (* n

(factorial (sub1 n)))]))

(check-expect (factorial 0) 1)

(check-expect (factorial 5) 120)

(check-expect (factorial 20) 2432902008176650000)

• What is the contract for nat-foldr?

• Rewrite factorial using nat-foldr. (No need for contract, purpose
statement or tests — just rewrite the code.)

10



[Here is some more space for the previous problem.]

11



14 POINTSProblem 7 Consider the following data definition:

;; An Exp (arithmetic expression) is one of:

;; - Number

;; - (make-op Exp [Number Number -> Number] Exp)

(define-struct op (left fun right))

We can use Exps to represent arithmetic expressions made up of numbers and
two-argument operators such as addition, subtraction, division, etc.

• Translate the following Intermediate Student Language expressions into
Exps:

(+ 1 2)

(+ (* 2 3) 4)

(* (* 3 2) (+ 2 3))

• Design a function, evaluate, that will take an Exp and carry out the arith-
metic computation it describes.

12



[Here is some more space for the previous problem.]

13


