Northeastern University College of Computer and Information Science

CS1100: Computer Science and Its Applications

Creating Graphs and Charts in Excel

Charts

- Data is often better explained through visualization as either a graph or a chart.
- Excel makes creating charts easy:
 - Column Charts
 - Pie Charts
 - Bar Graphs
 - Line Graphs
 - Area Graphs
 - Scatter Plots

Sample Data

• Here's some sales data that we would like to visualize:

1	А		В	
1	Customer	Sales		
2	Ravix Interactive	\$	120,900	
3	Soleno	\$	32,800	
4	Emperix Partners	\$	19,870	
5	Northern Alliance	\$	234,000	
6	The Boston Group	\$	189,000	
7	Geologenics	\$	87,500	
8	Cubotron	\$	9,000	

Pie Charts

- A pie chart is useful when you are trying to show proportions.
- How much of the sales revenue comes from each client?
- Who are our largest clients?

The Chart Layout

Customizing a Chart

🗶 🛃 💆	7 - (= -	Ŧ	C	hart Ex	amples - M	Aicrosof	t Excel				Chart T	ools			_			-	
File	Home	Inse	rt Page Layo	ut	Formulas	Data	i Re	view	View	Desig	n Layo	ut F	ormat						ا 🗆 🕥 ۵
Chart Area	a	*		A		I do	10.00	Hina	rin.	din.		(intro)	-	dia		1. A	at	100	Chart Name:
by Forma	at Selection									118138		(1.001.00.)	10000	DUDOO			I MAR		Chart 1
Reset :	to Match Sty	/le	Picture Shapes	Box	Title *	Axis Titles *	Legend	Data Labels *	Data Table *	Axes	Gridlines	Plot Area	Wall -	Floor	3-D Rotation	Trendline	Lines	Up/Down Bars ~	
Curre	ent Selection	n	Insert	0.000		347085	Labels	10100010000	1000000		Axes	1	Back	ground		1	Analysi	s	Properties

Sales

Transparency to Create a Minimal Display

 Useful for creating a worksheet display that minimizes chart details and simply shows a small graphic to support a set of numbers

Customer	Sales	Cubatran
Ravix Interactive	\$ 120,900	Geologenics
Soleno	\$ 32,800	
Emperix	\$ 19,870	Ravix
Northern Alliance	\$ 234,000	Soleno
The Boston Group	\$ 189,000	Emperiy
Geologenics	\$ 87,500	The Boston
Cubotron	\$ 9,000	Group
		Northern
		Alliance

Column Chart

- Also known as a bar chart, with rectangular bars of lengths usually proportional to the magnitudes or frequencies of what they represent.
- The bars are vertically oriented in a column chart
- Useful for showing data changes over a period of time, or illustrating comparisons
- Categories organized on horizontal axis
- Values on vertical axis

Column chart

Line Graph

- Often used to plot changes in data over time such as weekly temperature changes or stock market prices
- If plotting changes over time:
 - Time is plotted along the horizontal or x-axis
 - Data is plotted as individual points along the vertical axis

Line Graph

Total

High Low Close Graph

- Used to illustrate the fluctuation of stock prices or for scientific data
- The data should be arranged with stock names as row headings, and High, Low and Close entered as column headings
- In "Stock" Charts in Excel

High Low Close

X/Y Scatter Plot

- Useful for determining how things relate to one another e.g. profits vs. expenditures, height vs. weight, etc.
- Each data point has more than one attribute
 - Person (height, weight)
 - Quarter (profit, expenditure)
- Each attribute on single axis

X/Y Scatter Plot

Assigning a Series to a Secondary Axis

- A secondary value axis can make it easier to compare data series that have deviating ranges.
- Example: a series showing number of units sold per year has a range that is much higher than cost per unit per year that it's hard to see how they relate to each other. Putting one of the series on a secondary axis makes it possible to compare

Assigning a Series to a Secondary Axis

- The line graph on the left shows two data series with widely differing ranges, so it's hard to compare them.
- The graph on the right plots one series on a secondary axis making it much easier to compare.
- To move a series to a secondary axis, right-click on the series, click Format Data Series, select Series Options then select Secondary Axis.

Trendlines, Error Bars, etc.

- Excel also provides statistical analysis tools via the Layout tab / Analysis section.
 - Trendlines show the "best fit" for the data.
 - Error bars show "confidence intervals" around

data points.

Sparklines

- New to Excel 2010, we can also create charts or graphs that live within one cell
- Their inventor, Edward Tufte, describes them as "intense, simple, word-sized graphics"
- Meant to be embedded into what they are describing
- Presents the general shape of variation in some measurement, in a simple and highly condensed way

	Curre	nt 1-1	(ear
All Departments	\$159	.6 _~	\sim
Women's Apparel	\$ 32	.6 ~	
Patio & Garden	\$ 16	.2	\sim
Toys	\$ 15	.7 🗸	~
Electronics	\$ 14	.9 ~~	\sim
Baby Apparel	\$ 14	.2 🔨	\sim
Men's Apparel	\$ 13	.5 📈	\sim
Kid's Apparel	\$ 12	.6 ~^	~~
Furniture	\$ 11	.4 ~	~
Bed & Bath	\$ 11	.1 🦟	~
Kitchen	\$ 9	.9 ~	\sim
Home	\$ 7	.5 ~~	~

To Create Sparklines:

- Select the cell where you want the Sparkline to appear
- Click the Insert tab and look for the Sparklines group

\sim	ļus 🏧
Line	Column Win/Loss
	Sparklines

• Choose the data range and the location for the Sparkline.

Merging Cells

• To make sparklines bigger, you can merge multiple cells into a single cell.

– In the home tab:

Common Issues: data labels

• Data labeled "Series1"

Common Issues: data labels

- Data labeled "Series1"
- To fix it: Select Data

Common Issues: data labels

- Data labeled "Series1"
- To fix it: Select Data
 - Edit Series Name

Chart <u>d</u> ata range: ='No Name'!\$B\$2:\$C	\$8	
	Switch Row/Column).
Legend Entries (<u>B</u> eries)	Horizontal (Category)	Axis Labels
	/e 🔺 💌 📝 Edi <u>t</u>	
Series1	1	•
Series2	2	
	3	=
	4	
	5	_

Common Issues: axis labels

• Axis labels plotted instead

Common Issues: axis labels

- Axis labels plotted instead
- To fix it: Select Data

Common Issues: axis labels

- Axis labels plotted instead
- To fix it: Select Data
 - 1. Remove axis series
 - 2. Edit Axis Labels

Select Data Source			8 ×
Chart <u>d</u> ata range:	='axis labels'!\$A\$1:\$B\$8		E
		Switch Row/Column	Ĵ
Legend Entries (Series)	Horizontal (Category) <mark>Axis Labels</mark>
Add 🛛	Edit X Remove	Edi <u>t</u>	
Year		1	*
Total		2	
		3	=
		4	
		5	-
Hidden and Empty Co	ells		OK Cancel

Histograms

- Histograms are a specialized type of bar graph used to summarize groups of data.
- In some cases, you may collect a large number of data points for a single level of an independent variable.
 - That is, you take the same measurement over and over again. For example, when a lack of precision in measuring process does not give a good estimate of the true value with only a single measurement.

Binning

- How to summarize the results of these measurements?
- One way might be to simply calculate the average of all these measurements.
 - This would not, however, give you a good feel for how the data is *distributed*.
- A distribution graph, or **histogram**, allows you to see how many measurements fall within set ranges, or **bins**, of the dependent variable.
 - usually depicted as a bar chart, with one bar representing the count of how many measurements fall in a single bin.

Set up bins

- Find the minimum and maximum values of your data and the total range.
- Pick the number of bins that you want to use. Think small.
- Calculate the bin size: (Max Min)/#bins and Rounddown to get a whole number

Min	2
Max	75
# Bins	5
Bin Size	14

Set up bins

- Set up the first bin in the first Bin Array cell
 This will be the Min value of the data
- The next bin will be Min + Bin Size
- The next bin will be the previous Bin + Bin Size

Bin Array	Frequency
2	
16	3
30	7
44	7
58	2
72	2
86	2
	0

Set up bins

Base Case

- Set up the first bin in the first Bin Array cell
 This will be the Min value of the data
- The next bin will be Min + Bin Size Inductive Case
- The next bin will be the previous Bin + Bin Size

Frequency
3
7
7
2
2
2
0

Compute Frequencies

- Use the FREQUENCY array function to fill in the data column. (Order of the steps is important)
- First: select the range for the Frequency plus one extra cell (extra cell for values that are greater than the highest interval in the data_array.)
- Second: type in the frequency function, =FREQUENCY(data_array, bin_array)
- **Third:** press CTRL-SHIFT-ENTER for Windows, or CMD-ENTER on Mac

Bin Array	Frequency
2	
16	3
30	7
44	7
58	2
72	2
86	2
	0

Compute Frequencies

Plot Histogram - Frequency vs. Bin Data

- Highlight the bin array and frequency numbers. Click on the icon for **Column Chart**.
 - **Series**: X values are bin values, Y is the frequency. Add titles.

Any Question?