

A GUIDE TO WORK WITH
SQUEAK MORPH CLASSES

Author:
Onur Aytar

Northeastern University
CSIS

Date:
November 2002

 2

���������	��

���������	����������
�����
���������� ��!#"$�&%��(')!&�+*,�����-�	���/.0
1*	���2
3�4�#56������
������ !
7�8 .9���;:<�;=?>)���A@B%<�2
���*,�)CED���=F�;�G�-*��H���;� 7�8 �G
�� 8
1I
J .<�K�$C(� 8 %1��
��6�	��*4!L��
BCM�N���/�F���9%<�2
	CO=P��
	
3: !0I J .<�K�$C�� 8 %1�Q
��&�R�;�
@S*T�T�U�?�;=6�/.<�K�
C<� 8 %1��
��&� 8 *,�V�9�����W
X�+*,Y9
������E��
Z%
��
	C[CM�2��
 8 �/: !*;�?*$�Q
3� 8 .]*,�)C^�K�T
�I

Squeak !3 . 0

Complimentary file: _V`^aGb
cMd1e;f+gMhTi j�fkb
fml�npoHeRgMhTq9r�o/oMnpokr�q�q4h�q0r�q)qFsPr�s+fU`^l
rpa�tvuUf/omhTq

n�r�lEw�h?gM`�xylMom`
r3gMh�gOr�s�z
x?x?xXi n�nTq�i l�h�e�i h�g	e�{�c�`;_VhT{	r�t,s2rpa�{

 3

Table of Contents:

Syntax and terms 4

Part I - Working with Squeak Morph Class 5

Part II - The Making of a SimpleButton 7

Part III - The Making of a Spectrum 13

Part IV - The Making of a ShapeButton 17

Part V - The Making of a ListBox 34

Farewell 48

Squeak Morph Class Reference 49

 4

Syntax:

_ assignment

“comment”

< > the reader will select the text inside the tags

^ return

Terms:

Action : code to evaluate

Event : a user interrupt

Morph class : a class in Squeak! With display properties.

Morphic class : any subclass of Morph class.

Timer : a clock interrupt at a specified interval

 5

Part I – Working with Squeak Morph Classes

1. What is the Morph Class?

Morph class is an object with a two dimensional display and visual properties.
The root of all morphic objects can be found at the directory “Morphic – Kernel”
in Squeak System Browser (the green window)

2. What does a morphic object do?

A morphic object can handle user events and can contain other morphs. It also
“steps” meaning that it can act according to time. Besides these, have I
mentioned that it is displayed on the screen?

3. How to display a Morph?

A morph must be opened in a Squeak World in order to be displayed. The most
common way to do this is to use the “openInWorld” method. The following is an
example written in the Work Space (the pink window)

m _ Morph new. “Create a new morph instance”
m openInWorld. “Show the instance”

This will display a morph when done. To do it: select all the text above in the
Workspace, right click and click on ‘do it’.

4. How to change the visual properties of a morph?

A morph has visual properties regarding to its color, size and position. The
following methods can be used to alter these properties:

• color: aColor
• extent: aPoint
• height: aNumber
• width: aNumber
• position: aPoint
• top: aNumber
• left: aNumber

Let’s change the properties of m, which we opened in the previous section.
Again in the WorkSpace:

m color: Color black. “Make the morph black”
m extent: 200@150. “Make it this big”
m height: 170. “I didn’t like it, let’s make it taller”
m width: 170. “On the second thought, a square would seem nicer”
m position: 100@100. “Move, I can’t see a thing”
m left: 50. “A little more to the left, okay”

 6

m top: 50. “A little more upwards, that’s good”

5 – What is a submorph?

A submorph is a morph which is contained by another morph. This sounds
better in the other direction: A morph can nest other morphs and the morphs it
nests are called its submorphs.

All morphs have an instance variable called submorphs. The variable
submorphs is initialized to be an OrderedCollection and used to track the
morphs contained.

All submorphs are depended to their owner. Their positions change when the
owner’s position changes. Their visibility is also dependent to their owner. They
are deleted when the owner is deleted.

Another issue in submorphs is their z-order, meaning which morph is on the
front and which is at the back. The z-order follows the opposite order in the
OrderedCollection submorphs. First item on the front, last item on the back.

The following are some common submorph methods of the Morph object:

• addMorph: aMorph
• addMorphFront: aMorph
• addMorphBack: aMorph
• aMorph delete
• removeAllMorphs
• submorphs

Let’s add some submorphs to m. Yeah, m is getting popular. Again in the Work
Space:

b _ BorderedMorph new. “Create a new BorderedMorph instance”
m addMorph: b. “Add the instance to m”

Now, probably b is not inside m. Try to move m, you will see b is moving along
with it. But we definitely want b to be inside m.

b position: m position + (20@20).

Allright, it is done.

Now, let’s add another morph.

r _ RectangleMorph new.
m addMorph: r.
r position: m position + [20@20).

 7

Okay, we added it but where did b go? b is actually at the back of r now. I don’t
know you, but I wanted it to be in the frontline. Hence,

r delete. “Goodbye r”
r _ RectangleMorph new.
m addMorphBack: r.
r position: m position + [20@20).
r extent: 70@70.

Now this was what I wanted to do. Why? … I just did.

6 – This is it? Are we done?

Nope, we are not done. But this is all for the Work Space action. The next step
will be “The Making of a Button in Squeak” and we will be creating an object
which can handle events.

 8

Part II – The Making of a Button with Squeak

In this section we will create a new button object for our use. Our new object
will demonstrate inheritance both through extension and mapping. However we
would like to keep everything organized. So we start with the basics.

1 – How to create a new object category in Squeak

In order to accomplish this task, we should first open the green window, the
System Browser. On the top left pane of the System Browser:

• Right click
• Select “add item…”
• Enter a category name.

2 – How to create a new object in Squeak

To create a new object, we must be browsing a category. So, click on the
category you just created. The big bottom pane will change to the following:

 Object subclass: #NameOfSubclass
 instanceVariableNames: ‘’
 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘<Your category-name here>’

Here we can enter the name of our object and decide which object it is
extending. Also we can declare instance variables.

First lets determine what we need for our button.

• A name for the button object
• A label
• A border
• An action for click event
• An action for double click event

We will call our button: SimpleButton.

The name is okay, but we still need borders and a label.

In order to have borders we can extend BorderedMorph class. It will give us all
we need for background.

As for label, our object must have a submorph which can display strings.
Therefore we will have an instance variable called label.

 9

For actions we will have two other instance variables called clickAction and
doubleClickAction.

Finally we can create our button.

 BorderedMorph subclass: #SimpleButton
 instanceVariableNames: ‘label clickAction doubleClickAction ‘
 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘<your category name here>’

And press ALT + s to accept the changes we made. Our Button takes its place
on the object list. Well done.

Now that we extended the BorderedMorph, our Button has all of its methods.
Moreover we will declare label as a StringMorph, which will allow us to use all
of its methods too.

3 – Adding methods to the SimpleButton

We already have a SimpleButton with lots of methods inherited from the super
class BorderedMorph. However this is not enough. To have a fully functional
button we will add the following methods to our SimpleButton.

• clickAction “get the clickAction”
• clickAction: aBlock “set the clickAction”
• doubleClickAction “get the doubleClickAction”
• doubleClickAction: aBlock “set the doubleClickAction”
• foreColor “get foreColor – map to StringMorph”
• foreColor: aColor “set foreColor – map to StringMorph”
• label “get label – map to StringMorph”
• label: aString “set label – map to StringMorph”
• refresh “center label”

Moreover we will need to override the methods listed below

• click: evt “do clickAction if exists”
• doubleClick: evt “do doubleClickAction if exists”
• extent: aPoint “set extent and refresh”
• handlesMouseDown: evt “yes we handle it”
• height: aNumber “set height and refresh”
• width: aNumber “set width and refresh”

To add methods, we have to select the SimpleButton from the System Window
and then select a classification from the next pane. Then we can enter the
method code at the bottom pane.

 10

4 – The methods of SimpleButton

click: evt
 “When clicked do clickAction if it is not nil”
 clickAction ~= nil
 ifTrue: [clickAction value]! !

clickAction
 ^clickAction

clickAction: aBlock
 clickAction _ aBlock

doubleClick: evt
 “When double clicked do doubleClickAction if it is not nil”
 doubleClickAction ~= nil
 ifTrue: [doubleClickAction value]

doubleClickAction
 ^doubleClickAction

doubleClickAction: aBlock
 doubleClickAction _ aBlock

extent: aPoint
 “Let the super class do the work then center the label”
 super extent: aPoint.
 self refresh

foreColor
 ^label color

foreColor: aColor
 label color: aColor

handlesMouseDown: evt
 “Yes, I handle mouse press events”
 ^ true

height: aNumber
 super height: aNumber.
 self refresh.

initialize
 “Initialize my properties and instance variables”
 super initialize.
 “initialized all properties and instance variables inherited from super class”
 “Now initialize my specific properties and instance variables”
 self color: Color lightGray.
 self borderColor: Color black.

 11

 label _ StringMorph new.
 label contents: ‘SimpleButton’.
 self addMorph: label.
 self extent: 80@25

label
 ^label contents

label: aString
 “Let the StringMorph do the work then center the label.
 StringMorh automatically resize to fit contents.”
 label contents: aString.
 Self refresh

mouseDown: evt
 “wait for other events”
 evt hand waitForClicksOrDrag: self event: evt

refresh
 “center label”
 label top: self top + ((self height – label height) // 2).
 label left: self left + ((self width – label width) // 2)

width: aNumber
 super width: aNumber.
 self refresh

That’s all the methods we need to write for SimpleButton

5 – Testing the SimpleButton

We now have a SimpleButton, why not use it. We can use the Work Space for
testing our button.

s _ SimpleButton new.
s openInWorld.
s label: ‘Window’.
s clickAction: [SystemWindow new openInWorld].

Okay, the button is there and it opens a new SystemWindow when we click on
it.

Can we change the border width of the button?

s borderWidth: 1.

Yes, it really changes. Although we haven’t written a borderWidth method,
SimpleButton inherited it from its super class BorderedMorph.

 12

6 – Are we done?

Well, we are close to complete the basic information required for using morphic
objects in Squeak. Next chapter is about steps and time intervals. It is an easy
concept to cover. Yet, there is a lot more to be learned in order to be able to say
we are done.

 13

Part III – The Making of a Spectrum

1 – Are we really making a spectrum analyzer?

No, we are not. I wish I knew a lot more about sound patterns, unfortunately I
don’t. What we are going to do is a Morph which acts like a Spectrum analyzer
using random values.

Why are we doing this? To demonstrate the step method of course. In this part
we will examine how the timer works for a Morph object.

2 – The regular stuff first

This part is really an easy one, we will create a simple DemonstrationMorph
object, which has two instance variables:

• interval “How frequent the display will change”
• rand “A random number generator”

interval is a number between 0 an 1000. rand will be a Random object.

Here are the class definition and the initialize method

Morph subclass: #DemonstrationMorph
 instanceVariableNames: ‘interval rand ‘
 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘Aytar – Common Controls’

initialize
 super initialize.
 rand _ Random new.
 super extent: 10@60.
 self color: Color black.
 self interval: 200.

Now, if you noticed the bold line in the initialize method, there is something
wrong about it. It says: “super extent: 10@60” Why do we call the super class.
Simply because we will disable resizing, which is our next discussion.

3 – Not allowing direct resizing

Our new spectrum will be a fixed object lacking flexibility. So we would better
disable some of its methods. Since we extended Morph class, our new object
has a lot of methods by default. Look at the following methods.

extent: aPoint
 “do nothing”

 14

height: aNumber
 “do nothing”

width: aNumber
 “do nothing”

We have overridden extent, height and width methods, and they now do
nothing. So, if anyone calls them directly, nothing will happen.

This was why we used “super extent: 10@60” in the initialize method. This way
we called the extent method from the Morph class.

4 – More overriding for timer

In the previous section, we have overridden methods to disable them. Now we
will override other methods to enable them.

The step and stepTime methods are used for timing by Morph classes. In the
Morph class they are not working by default. We are going to override them as
below:

stepTime
 ^interval

step
 self drawRectangles

stepTime method specifies how frequently the step method will be invoked. The
measurement units are milliseconds, so if interval is 1000, then the step
method will be invoked once every second.

We have overridden the step method to call drawRectangles method every
interval * milliseconds.

5 – Some other timer methods that we don’t need in this object

There are some other important timer methods, which are useful to know.

• startStepping – starts the timer
• stop – stops the timer
• isStepping – returns whether the timer is active or not.

All these methods are inherited from Morph class, as we extend it and there is
no need to override them.

6 – What is left for the spectrum?

We still need to implement the visual parts and property set/get methods. Here
they are with comments.

 15

drawRectangles
“redraw the spectrum”
 | r n currentTop|
“first clear all current rectangles”
 self removeAllMorphs.
“now redraw them”
 currentTop _ self top + self height – 5.
 N _ rand nextInt: 12.
 (1 to: n)
 do: [:i |
 r _ self newElement: i.
 r top: currentTop.
 R left: self left.
 Self addMorph: r.
 currentTop _ currentTop – 5.
].

newElement: n
“Create a new RectangleMorph with the color according to its position”
 | r |
 r _ RectangleMorph new.
 R extent: 10@4.
“if n is less then 5, rectangle is light green”
 n < 5
 ifTrue: [
 r color: Color green.
 R borderColor: Color lightGreen.
 ^r
].
“if n is greater than 8, rectangle is orange”
 n > 8
 ifTrue: [
 r color: Color orange.
 R borderColor: Color orange.
 ^r
].
“Otherwise rectangle is yellow”
 r color: Color yellow.
 R borderColor: Color yellow.
 ^r

interval
 ^interval

interval: aNumber
 interval _ aNumber

And there we are. We have a useless but nice looking object. Our aim was to
learn the stepping mechanism anyway. As long as we reach our goal, writing a
little object is not a loss.

 16

7 – Are we done yet?

You now have all the basic information you need to use Morph classes.
Congratulations.

The tutorial will continue with making of a ShapeButton and a ListBox. Both
those controls are much more sophisticated but they have the same idea
behind them.

You have two choices: either you can continue reading the tutorial, or you can
go look at the classes yourself. If you are going on your own do not forget to
click on “?” in the System Browser. It contains valuable information about the
design of objects.

 17

Part IV – The Making of a ShapeButton

In this part we are getting down to the business. We will create a Morph
subclass with 25 instance variables, over 70 instance methods and 4 class
methods of its own. The numbers may seem scary but, our path is smooth and
clean. Nevertheless, first things first.

1 - What will the ShapeButton do?

Before creating an object we must define a specification document for that
object, which points the requirements the object meets.

Here we go, if we take the underlined expressions from the specifications, we
will see that there is a lot to do with this object.

2 – Design Decisions

2.1. Which class to extend?

Now, this is a tough question. We know that the ShapeButton requires borders,
but a BorderedMorph or a RectangleMorph is out of question, since
ShapeButton may have an oval shape too. From the same point of view,
extending EllipseMorph class is also impossible.

Therefore, we are going to extent the Morph class itself, and use mapping for
the shape. What was mapping? Mapping is linking an object’s methods to some
of its sub-objects.

ShapeButton Specifications

1. Visual Aspects:
• The ShapeButton should be able have rectangular, oval

or rounded shapes.
• The ShapeButton should be able to have a border.
• The ShapeButton should be able to have a hover (mouse

over) state.
• The ShapeButton should be able to have a down (mouse

down) state.
• The ShapeButton must have a label.
• The label must have alignment options.
• Hover and down states must enable the user to switch

them off and on.

2. Functionality:
• The ShapeButton must be able to handle all mouse

events except drag&drop.
• The ShapeButton must have an index value in case if it

is needed.

 18

2.2. Deciding on submorphs.

So far so good; now that we have decided to use mapping for most of the visual
properties, we should select the submorphs and create instance variables for
them.

As we did in SimpleButton, we will use a StringMorph for the label.

In addition we will have an instance variable called “mask”, which will become a
RectangleMorph or an EllipseMorph on request.

So we have two instance variables for submorphs:

• label
• mask

2.3. Problems in mapping due to the states

Normally, we could map methods like color, borderColor to the mask we are
using as below:

color: aColor

 mask color: aColor

color

 ^ mask color

However, this will not work due to the hover and down states. We must keep
the original color and other variables of the ShapeButton. So we need the
following instance variables:

• normalBorderColor
• normalBorderWidth
• normalColor
• normalForeColor

2.4. Issues about hover and down states

From the specifications we know that these states can be turned on and off.
Yes, we need two additional instance variables which are � eystro values:

• hasHoverEffect
• hasMouseDownEffect

Besides we will need to store the visual properties of these states. Yes, even
more instance variables:

 19

• hoverBorderColor
• hoverBorderWidth
• hoverColor
• hoverForeColor

• downBorderColor

• downBorderWidth
• downColor
• downForeColor

Wow, this is a lot. But it can’t be helped.

2.5. Actions upon mouse events

I guess you remember what we did for SimpleButton. We had a clickAction and
a doubleClickAction instance variables. This time we need a lot more, since the
specifications state that the ShapeButton must be able to handle all mouse
events except drag&drop. Below is the list of action variables, which will be
blocks.

• clickAction Action to be taken when clicked
• doubleClickAction Action to be taken when double clicked
• mouseDownAction Action to be taken when mouse is pressed
• mouseUpAction Action to be taken when mouse is released
• mouseStillDownAction Action to be taken if mouse is still pressed
• mouseOverAction Action to be taken when hover
• mouseLeaveAction Action to be taken when roll off.

These events are all implemented in Morph class, however, we will need to
override them to use these instance variables.

2.6. Did we miss something?

Unfortunately we did. We still need an index and an alignment variable. So the
final two instance variables are:

• index
• alignment

index will simply be a number, alignment will be a number between 1 and 3.

Well done, we have completed the instance variables.

2.7. What about methods?

Well, we have 25 instance variables. That means we will have 50 methods for
setting and retrieving their values.

 20

Plus, we will need to override the event methods and sizing methods as we did
in SimpleButton.

And of course we will have initialization and private methods, some of which we
will put into the class rather than the instance.

2.8. Why put methods in the class?

First of all we don’t (I don’t know you, but I don’t) want these methods called by
the user in runtime easily.

Besides we already have a lot of methods, we really should not populate around
with unusable methods.

2.9. Method categories

Since we have a lot of methods, it will be useful to categorize them. To create a
new category for methods, we need to right-click on the third pane from the left
in the System Browser and select “new category…”. We will have the following
categories:

• event handling
• events – processing
• hover effect
• initialization
• mouse down effect
• visual properties

Naturally we will create these categories after we create the ShapeButton object,
speaking of which we now are ready for.

3 – The creation of ShapeButton

Morph subclass: #ShapeButton
instanceVariableNames: ‘label hasHoverEffect hasMouseDownEffect

normalColor normalForeColor normalBorderColor normalBorderWidth
hoverColor hoverForeColor hoverBorderColor hoverBorderWidth downColor
downForeColor downBorderColor downBorderWidth mouseOverAction
mouseLeaveAction mouseDownAction mouseStillDownAction mouseUpAction
clickAction doubleClickAction mask alignment index ‘

 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘<your category here>’

There we go, by accepting this we officially create the ShapeButton.

 21

4 – Instance methods of ShapeButton

Assuming that you already read the previous chapter, I believe that you already
know how we map methods, how we set and get variables. Therefore, we will
only discuss the important methods, which are introduced for the first time. All
of the methods can be found at the end of this chapter.

4.1. Handling mouse over

handlesMouseOver: evt
 ^ true.

By overriding this method of Morph class, we are stating that the ShapeButton
handles mouse over event.

4.2. Handling mouse still down

handlesMouseStillDown: evt
 ^ true.

The same as mouse over, we are stating that ShapeButton handles this event
too.

4.3. What to do upon events

We will override the methods below:

• click: evt what to do when clicked
• doubleClick: evt what to do when double clicked
• mouseDown: evt what to do when mouse is pressed
• mouseEnter: evt what to do when mouse is over
• mouseLeave: evt what to do when mouse leaves
• mouseStillDown: evt what to do if mouse is still pressed
• mouseUp: evt what to do when mouse is released

For mouseDown, mouseUp, mouseEnter and mouseLeave events we will need to
implement the hover and down effects. Here is the code and explanations.

mouseDown: evt

hasMouseDownEffect
 ifTrue: [
 self color: downColor.
 Self borderColor: downBorderColor.
 Self foreColor: downForeColor.
 Self borderWidth: downBorderWidth.
].
 mouseDownAction ~= nil
 ifTrue: [mouseDownAction value].

 Evt hand waitForClicksOrDrag: self event: evt

 22

If hasMouseDownEffect is true, then the visual properties are set to the down
state settings.

After that, if an action has been assigned to the event, that action is invoked.

mouseUp: evt
 hasMouseDownEffect
 ifTrue: [
 self color: normalColor.
 Self borderColor: normalBorderColor.
 Self foreColor: normalForeColor.
 Self borderWidth: normalBorderWidth.
].
 mouseUpAction ~= nil
 ifTrue: [mouseUpAction value].

When mouse is released, then the button is not in down state anymore. So we
set the original values back.

And of course we invoke the action if it exists.

This is the same for the mouseEnter and mouseLeave events, as it can be seen
in their methods. The only difference is that we are switching the hover and
normal state.

mouseEnter: evt
 hasHoverEffect
 ifTrue: [
 self color: hoverColor.
 Self borderColor: hoverBorderColor.
 Self foreColor: hoverForeColor.
 Self borderWidth: hoverBorderWidth.
].
 mouseOverAction~= nil
 ifTrue: [mouseOverAction value].

mouseLeave: evt
 hasHoverEffect
 ifTrue: [
 self color: normalColor.
 Self borderColor: normalBorderColor.
 Self foreColor: normalForeColor.
 Self borderWidth: normalBorderWidth.
].
 mouseLeaveAction ~= nil
 ifTrue:[mouseLeaveAction value]

The states are complete but we still have other actions. Here they are:

click: evt
 clickAction ~= nil
 ifTrue: [clickAction value]

 23

doubleClick: evt
 doubleClickAction ~= nil
 ifTrue: [doubleClickAction value]

mouseStillDown: evt
 mouseStillDownAction ~= nil
 ifTrue:[mouseStillDownAction value]

Here we are, we completed all events.

4.4. Overcoming the mapping problem

As we discussed earlier, direct mapping does not work in our case. Therefore we
will write multiple methods and keep our variables.

color: aColor
 mask color: aColor.

color
 ^ mask color.

These and related methods such as borderWidth will be overridden to avoid
problems from inheritance.

normalColor: aColor
 normalColor _ aColor.
 Self color: aColor.

normalColor
 ^ normalColor

hoverColor: aColor
 hoverColor _ aColor

hoverColor
 ^ hoverColor

mouseDownColor: aColor
 downColor _ aColor

mouseDownColor
 ^downColor

This is the way we will store our variables. And note that setting normalColor
automatically sets the color of the mask. Other related methods can be found at
the end of this chapter.

4.5. The instance methods cooperating with class methods

Some of our instance methods will cooperate with class methods. As mentioned
earlier, class methods are same for all instances. You can also think as they are
static methods in a Java object class.

 24

initialize
“initialize the control with default properties.”
 Super initialize.
 Super color: Color transparent.
 Self shape: 3.
 Alignment _ 3.
 Label _ StringMorph new.
 Label initialize.
 Self label: ‘ShapeButton’.
 Self addMorph: label.
 ShapeButton defaultProperties: self.
 Self refresh.

The bottom bold line is where the class method is called. The instance simply
passes itself to the method and the class shapes up the instance.

Another important issue here is that we set the color of the super class to
transparent. Why do we do that? Well, since we map color to the mask, and the
mask may not cover all of the ShapeButton area, it is good for the ShapeButton
itself to be transparent. Don’t you think so?

Shape: anInteger
“ Set the shape of the button. 1 – Rectangle, 2 – Oval, 3 – Rounded Rectangle”
 anInteger < 1
 ifTrue: [^false].
 anInteger > 3
 ifTrue:[^false].
 Mask ~= nil
 ifTrue: [mask delete].
 anInteger = 1
 ifTrue:[
 mask _ ShapeButton shapeRectangle: self.
 Self addMorphBack: mask.
 ^ true
].
 anInteger = 2
 ifTrue: [
 mask _ ShapeButton shapeOval: self.
 Self addMorphBack: mask.
 ^ true
].
 anInteger = 3
 ifTrue: [
 mask _ ShapeButton shapeRoundedRectangle: self.
 Mask cornerStyle: #rounded.
 Self addMorphBack: mask.
 ^ true
].

Label comeToFront.

Once again the bold lines call class methods. However shape method is an
important method as we discussed in design decisions.

 25

Shape: method deletes current mask and replaces it with the new one using
delete and addMorphBack methods, which we discussed in the first chapter.

I do not know why I used “label comeToFront”, since I used “addMorphBack”,
but “comeToFront” sets z-order of a submorph to 1.

5. Class methods

We are almost done. There are not many class methods and they are simple
enough. They basically do some regular tasks for all instances.

defaultProperties: aShapeButton
 | s |
 s _ aShapeButton.
 s normalColor: Color gray.
 s normalBorderColor: Color black.
 s normalForeColor: Color black.
 s normalBorderWidth: 1.
 s hoverColor: Color gray.
 s hoverBorderWidth: 2.
 s hoverForeColor: Color black.
 s hoverBorderColor: Color black.
 s mouseDownColor: Color black.
 s mouseDownForeColor: Color gray.
 s mouseDownBorderWidth: 2.
 s mouseDownBorderColor: Color white.
 s turnOnHoverEffect.
 s turnOnMouseDownEffect.
 s extent: 80@30.

defaultProperties simply gives an instance a regular set of values, and make it
look good enough when initialized and opened.

shapeOval: aShapeButton
 | m |
 m _ EllipseMorph new.
 m extent = aShapeButton extent.
 m position = aShapeButton position.
 aShapeButton extent = m extent.
 ^ m

shapeRectangle: aShapeButton
 | m |
 m _ RectangleMorph new.
 m extent: aShapeButton extent.
 m position: aShapeButton position.
 ^ m

shapeRoundedRectangle: aShapeButton
 | m |
 m _ RectangleMorph new.
 m cornerStyle: #rounded.
 m extent: aShapeButton extent.

 26

 M position: aShapeButton position.
 ^ m

These three methods create new RectangleMorph or EllipseMorph instances
and send them back to the ShapeButton instance to wear as a mask.

See, there is really nothing sophisticated about class methods except that they
are called by the class name.

6 – Chapter summary

In this chapter we coped with mapping and extending problems. We covered all
mouse events except drag&drop and we handled two submorphs with z-order.
Finally, we made an introduction to class methods.

Now, we have a versatile ShapeButton, which in the next chapter we will use for
a totally different purpose. If there will be a next chapter.

This part ends with the methods of ShapeButton, but you will probably look at
them from the System Browser. Just in case they are here.

7 – All methods of ShapeButton

Instance Methods

methodsFor: ‘event handling’

click: evt
 clickAction ~= nil
 ifTrue: [clickAction value]

doubleClick: evt
 doubleClickAction ~= nil
 ifTrue: [doubleClickAction value]

handlesMouseDown: evt
 ^ true.

handlesMouseOver: evt
 ^ true.

handlesMouseStillDown: evt
 ^ true.

mouseDown: evt
 hasMouseDownEffect
 ifTrue: [
 self color: downColor.
 self borderColor: downBorderColor.
 self foreColor: downForeColor.
 self borderWidth: downBorderWidth.
].

 27

 mouseDownAction ~= nil
 ifTrue: [mouseDownAction value].
 evt hand waitForClicksOrDrag: self event: evt

mouseEnter: evt
 hasHoverEffect
 ifTrue: [
 self color: hoverColor.
 self borderColor: hoverBorderColor.
 self foreColor: hoverForeColor.
 self borderWidth: hoverBorderWidth.
].
 mouseOverAction~= nil
 ifTrue: [mouseOverAction value].

mouseLeave: evt
 hasHoverEffect
 ifTrue: [
 self color: normalColor.
 self borderColor: normalBorderColor.
 self foreColor: normalForeColor.
 self borderWidth: normalBorderWidth.
].
 mouseLeaveAction ~= nil
 ifTrue:[mouseLeaveAction value]

mouseStillDown: evt
 mouseStillDownAction ~= nil
 ifTrue:[mouseStillDownAction value]

mouseUp: evt
 hasMouseDownEffect
 ifTrue: [
 self color: normalColor.
 self borderColor: normalBorderColor.
 self foreColor: normalForeColor.
 self borderWidth: normalBorderWidth.
].
 mouseUpAction ~= nil
 ifTrue: [mouseUpAction value].

methodsFor: ‘events-processing’

clickAction
 ^clickAction

clickAction: aBlock
 clickAction _ aBlock

doubleClickAction
 ^doubleClickAction

doubleClickAction: aBlock
 doubleClickAction _ aBlock

 28

mouseDownAction
 ^mouseDownAction

mouseDownAction: aBlock
 mouseDownAction _ aBlock

mouseEnterAction
 ^mouseOverAction

mouseEnterAction: aBlock
 mouseOverAction _ aBlock

mouseLeaveAction
 ^mouseLeaveAction

mouseLeaveAction: aBlock
 mouseLeaveAction _ aBlock

mouseStillDownAction
 ^ mouseStillDownAction

mouseStillDownAction: aBlock
 mouseStillDownAction _ aBlock

mouseUpAction
 ^ mouseUpAction

mouseUpAction: aBlock
 mouseUpAction _ aBlock

methodsFor: ‘hover effect’

hasHoverEffect
 hasHoverEffect = nil
 ifTrue: [hasHoverEffect _ false].
 ^ hasHoverEffect

hoverBorderColor
 ^hoverBorderColor

hoverBorderColor: aColor
 hoverBorderColor _ aColor

hoverBorderWidth
 ^ hoverBorderWidth

hoverBorderWidth: aNumber
 hoverBorderWidth _ aNumber

hoverColor
 ^ hoverColor

 29

hoverColor: aColor
 hoverColor _ aColor

hoverForeColor
 ^hoverForeColor

hoverForeColor: aColor
 hoverForeColor _ aColor

normalBorderColor
 ^normalBorderColor

normalBorderColor: aColor
 normalBorderColor _ aColor.
 self borderColor: aColor

normalBorderWidth
 ^ normalBorderWidth

normalBorderWidth: aNumber
 normalBorderWidth _ aNumber.
 self borderWidth: aNumber

normalColor
 ^ normalColor

normalColor: aColor
 normalColor _ aColor.
 self color: aColor

normalForeColor
 ^normalForeColor

normalForeColor: aColor
 normalForeColor _ aColor.
 self foreColor: aColor

turnOffHoverEffect
 hasHoverEffect _ false

turnOnHoverEffect
 hasHoverEffect _ true

methodsFor: ‘initialization’

index
 ^ index

index: aNumber
 index _ aNumber.

 30

initialize
 “initialize the contol with default properties.”
 super initialize.
 super color: Color transparent.
 self shape: 3.
 alignment _ 3.
 label _ StringMorph new.
 label initialize.
 self label: ‘ShapeButton’.
 self addMorph: label.
 ShapeButton defaultProperties: self.
 self refresh

methodsFor: ‘mouse down effect’

hasMouseDownEffect
 hasMouseDownEffect = nil
 ifTrue:[hasMouseDownEffect _ false].
 ^ hasMouseDownEffect

mouseDownBorderColor
 ^downBorderColor

mouseDownBorderColor: aColor
 downBorderColor _ aColor

mouseDownBorderWidth
 ^downBorderWidth

mouseDownBorderWidth: aNumber
 downBorderWidth _ aNumber

mouseDownColor
 ^downColor

mouseDownColor: aColor
 downColor _ aColor

mouseDownForeColor
 ^downForeColor

mouseDownForeColor: aColor
 downForeColor _ aColor

turnOffMouseDownEffect
 hasMouseDownEffect _ false

turnOnMouseDownEffect
 hasMouseDownEffect _ true

methodsFor: ‘visual properties’

 31

alignCenter
 self alignment: 3

alignLeft
 self alignment: 1

alignRight
 self alignment: 2

alignment
 ^ alignment

alignment: aNumber
 “1 – Left aligned, 2 – Right aligned, 3 – Center”
 alignment _ aNumber.
 self refresh.

borderColor
 ^ normalBorderColor

borderColor: aColor
 mask borderColor: aColor

borderWidth
 ^ normalBorderWidth

borderWidth: aNumber
mask borderWidth: aNumber

color
 ^ normalColor

color: aColor
 mask color: aColor

extent: aPoint
 super extent: aPoint.
 self refresh

foreColor
 ^ normalForeColor

foreColor: aColor
 label color: aColor

height: anInteger
 super height: anInteger.
 self refresh

label
 ^ label contents

label: aString
 label contents: aString.
 self refresh

 32

refresh
 label ~= nil
 ifTrue: [
 alignment = 1
 ifTrue: [
 label left: self left + 2
].
 alignment = 2
 ifTrue: [
 label left: self left + self width – label width – 2.
].
 alignment = 3
 ifTrue: [
 label left: self left + ((self width – label width) // 2).
].
 label top: self top + ((self height – label height) // 2).
].
 mask ~= nil
 ifTrue: [
 mask extent: self extent.
 mask position: self position.
]

shape: anInteger
 “ Set the shape of the button. 1 – Rectangle, 2 – Oval, 3 – Rounded Rectangle”
 anInteger < 1
 ifTrue: [^false].
 anInteger > 3
 ifTrue:[^false].
 mask ~= nil
 ifTrue: [mask delete].
 anInteger = 1
 ifTrue:[
 mask _ ShapeButton shapeRectangle: self.
 self addMorphBack: mask.
 ^ true
].
 anInteger = 2
 ifTrue: [
 mask _ ShapeButton shapeOval: self.
 self addMorphBack: mask.
 ^ true
].
 anInteger = 3
 ifTrue: [
 mask _ ShapeButton shapeRoundedRectangle: self.
 mask cornerStyle: #rounded.
 self addMorphBack: mask.
 ^ true
].
 label comeToFront

width: anInteger
 super width: anInteger.
 self refresh

 33

Class Methods

methodsFor: ‘Shapes’

shapeOval: aShapeButton
 | m |
 m _ EllipseMorph new.
 m extent = aShapeButton extent.
 m position = aShapeButton position.
 aShapeButton extent = m extent.
 ^ m

shapeRectangle: aShapeButton
 | m |
 m _ RectangleMorph new.
 m extent: aShapeButton extent.
 m position: aShapeButton position.
 ^ m

shapeRoundedRectangle: aShapeButton
 | m |
 m _ RectangleMorph new.
 m cornerStyle: #rounded.
 m extent: aShapeButton extent.
 m position: aShapeButton position.
 ^ m

methodsFor: ‘instance creation’

defaultProperties: aShapeButton
 | s |
 s _ aShapeButton.
 s normalColor: Color gray.
 s normalBorderColor: Color black.
 s normalForeColor: Color black.
 s normalBorderWidth: 1.
 s hoverColor: Color gray.
 s hoverBorderWidth: 2.
 s hoverForeColor: Color black.
 s hoverBorderColor: Color black.
 s mouseDownColor: Color black.
 s mouseDownForeColor: Color gray.
 s mouseDownBorderWidth: 2.
 s mouseDownBorderColor: Color white.
 s turnOnHoverEffect.
 s turnOnMouseDownEffect.
 s extent: 80@30

 34

Part V – The Making of a ListBox

In this final part we will create ourselves a ListBox control which detects most
mouse events through its submorphs but responds to keyboard events. We will
cover the cursorPoint method, even though it is not really safe to use in a list
box, and we will discover some scrollbar facts.

Although the ListBox is more sophisticated then the ShapeButton, you will be
amazed that it takes shorter to write than writing ShapeButton. The reason is
simple: we are going to use ShapeButtons inside the ListBox and have them do
all the dirty work for us. We put a lot of effort into that ShapeButton afterall.
Now it is payback time.

1 – The ScrollBar

Bad news: The built-in scrollbar in Squeak works only with ModelMorph
subclasses.

Evidentially, the creators of Squeak had reasons to do it this way. However we
may still want to use ScrollBars with other morphic objects as well.

There is an obvious thing to do: we will extend the ScrollBar, and override its
method where it actually does the scrolling of a ModelMorph.

ScrollBar subclass: #ScrollBarForNonModels
 instanceVariableNames: ‘’
 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘<your category-name here>’

And the method to be overridden is:

setValue: newValue
“send the value to your owner”
 | v |
 v _ newValue roundTo: scrollDelta.
 owner scrollBarValue: v.

If you are curious, here is the original method with comments

setValue: newValue
 “Using roundTo: instead of truncateTo: ensures that scrollUp will scroll the
same distance as scrollDown.”
 ^ super setValue: (newValue roundTo: scrollDelta)

Ehm, it’s not here. We have to look at the Slider class.

setValue: newValue
“Called internally for propagation to model”

 35

 self value: newValue.
 self use: setValueSelector orMakeModelSelectorFor: ‘Value:’
 in: [:sel | setValueSelector _ sel. Model perform: sel with: value]

What??? What does the command in bold mean???

It is a method inherited from ModelMorph class.

use: cachedSelector orMakeModelSelectorFor: selectorBody in: selectorBlock

It is indeed a complicated method. It compiles a new method, with a null return
value if the model does not support certain actions, if it supports the actions, it
does the desired action.

Anyway, with overriding this method we now have a ScrollBarForNonModels
which sends its value to its owner whenever changed. Neat, eh?

2 – Specifications for ListBox

 Visual Specifications

• ListBox should highlight its items upon mouseover
• ListBox should give a different color to the selected item
• ListBox’ size must be adjustable

Events
• ListBox must be able to be scrolled using arrow keys
• When a key is pressed, ListBox must select the next item starting

with the pressed key’s value, if such an item exists.
• ListBox must respond to click and double click events

Functionality
• ListBox must be able to contain string and numeric data
• ListBox must be able to contain an additional data for each item
• ListBox must be able to add items as a whole
• ListBox must be able to remove items if necessary

3 – Design Decisions

A list box is simply a collection of items placed in a container. We can think
that all rows in the list box is a ShapeButton. Our ShapeButton is versatile
enough to act as a row. MoreOver ShapeButton already has hover effect and it
handles click and double click events.

We can change the color of ShapeButton as we wish, therefore, re-coloring the
selected item is no problem, but we have to store the colors.

We can easily make the box resizable.

 36

We also have to keep another collection for item data, but it is just a collection,
it has no visual representation whatsoever.
Adding and removing items to a collection is a piece of cake.

There are some topics about resizing, sorry size in general. The items may not
fit the box. Hence we need three variables to store

1. Maximum number of visible rows
2. Top row index as in item collection
3. And for our convenience last row index as in item collection

We are left with keyboard events and we need to figure out a way to select
items. Naturally they will be selected when they are clicked, but, how will the
list box know which one it is.

Keyboard events are the subject of this chapter, so don’t worry about them. For
the selection, I say we use the the position of the row. Yes, it is not a good idea,
but I want to demonstrate the cursorPoint method.

And which class should we extend? I say we extend BorderedMorph, it will look
good.

4 – The ListBox Class

BorderedMorph subclass: #ListBox
instanceVariableNames: ‘items itemData selectedItem normalColor

normalForeColor highlightColor selectedColor selectedForeColor lastListIndex
listIndex clickAction doubleClickAction containers maxVisibleItems topItem
lastItem sBar ‘

 classVariableNames: ‘’
 poolDictionaries: ‘’
 category: ‘<your category-name here>’

items: an OrderedCollection of items to be listed

itemData: an OrderedCollection of item data

containers: may be rows were a better name. An OrderedCollection of
ShapeButtons.

listIndex: current selected item

lastListIndex: this will let us refresh faster. Rather than removing all
submorphs and redrawing them, we will address two ShapeButtons upon
selection changes.

 37

5 – The methods of ListBox

Don’t worry; I won’t bother you with all methods anymore. We have just a little
left to cover. The methods are provided at the end of chapter and you probably
have them installed in Squeak too.

5.1 – Handling keyboard events

We are going to override again. As usual Morph class provides these methods
for us, but they are not functional, waiting for us to override.

The first method to override is:

hasFocus
 ^ true.

If the user can’t focus on an object, that object can’t handle keyboard events.
E.g., you can only type in the active window.

The second step is:

handlesKeyboard: evt
 ^true

Just like the mouse event, isn’t it?

Finally, the last one:
 �

eystroke: event
 | aChar |
 (self scrollByKeyboard: event) ifTrue: [^self].
 aChar _ event keyCharacter.
 ^ self keyPressed: aChar

Whenever there is a key stroke while listbox is focused this method will be
invoked. But what does the bold line mean?

The bold line tells ListBox to go and check if arrow keys has been pressed. How
does it tell that? We are going to write that method too.

If scrollByKeyboard method returns false, mentioning some other key has been
pressed, then “keypressed” method will be called.

So, here are the two methods to finalize keyboard event.

scrollByKeyboard: event
 (listIndex = nil)
 ifTrue:[listIndex _ 0].
 event keyValue = 30 “up arrow”

 38

 ifTrue: [
 listIndex = 1
 ifTrue:[^true].
 self listIndex: listIndex – 1.
 ^ true].
 Event keyValue = 31 “down arrow”
 ifTrue: [
 listIndex = items size
 ifTrue:[^true].
 self listIndex: listIndex + 1.
 ^ true].
 ^ false

keyPressed: aChar
 | s |
 s _ listIndex.
 s = 0
 ifTrue:[s _ 1].
 (s to: items size)
 do: [:i |
 (aChar = (((items at: i) at: 1) asCharacter))
 ifTrue:[
 self listIndex: i.
 ^ true.
].
].

As you can see, we change the listIndex variable and do nothing. So how come
the list gets updated? The listIndex method does that.

listIndex: aNumber
 lastListIndex _ listIndex.
 listIndex _ aNumber.
 selectedItem _ items at: aNumber.
 listIndex < topItem
 ifTrue:[
 sBar setValue: (listIndex * (sBar scrollDelta)) asFloat.
 ^ true
].
 listIndex > lastItem
 ifTrue:[
 sBar setValue: ((listIndex – maxVisibleItems + 1) * (sBar scrollDelta))
asFloat.
 ^ true
].
 self updateList.

Whenever the listIndex gets changed it calls the updateList method, which
changes the colors of the rows.

 39

The important point here is what happens if the selected item is not in display
range. listIndex method considers that too. It sets the value of the scrollbar so
that the selected item can be seen.

5.2. Mapping mouse events

Just look at the bold lines, this is a long method.

showList
 | b currentTop sD pD l|
 sBar top: self top.
 sBar left: self left + self width – sBar width.
 sBar height: self height.
 containers = nil
 ifTrue:[^ false].
 Items = nil
 ifTrue:[^ false].
 topItem = nil
 ifTrue:[^ false].
 currentTop _ self top + 2.
 L _ lastItem.
 ((items size) < maxVisibleItems)
 ifTrue: [l _ items size].
 (topItem to: l)
 do: [:i |
 ((items at: i) ~= nil)
 ifTrue: [
 b _ ShapeButton new.
 b initialize.
 b shape: 1.
 b alignment: 1.
 b label: (items at: i).
 self addMorph: b.
 b normalColor: normalColor.
 b normalBorderColor: normalColor.
 b normalBorderWidth: 0.
 b normalForeColor: normalForeColor.
 b hoverColor: highlightColor.
 b hoverBorderColor: highlightColor.
 b hoverBorderWidth: 0.
 b hoverForeColor: normalForeColor.
 b height: 14.
 b width: self width – 2 – sBar width.
 b top: currentTop.
 b left: self left + 2.
 b index: i.
 b clickAction: [self gotClicked: (self cursorPoint y – self top)].
 b doubleClickAction: [self gotDoubleClicked].
 b doubleClickAction: doubleClickAction.
 b turnOnHoverEffect.
 b turnOffMouseDownEffect.
 currentTop _ currentTop + 14.
 containers add: b
].

 40

].
 ((items size) > maxVisibleItems)
 ifTrue: [
 sD _ (1 / (items size)) asFloat.
 pD _ ((items size – maxVisibleItems) / (items size)) asFloat.
 sBar scrollDelta: sD pageDelta: pD.
 sBar interval: (1 – pD) asFloat.
 sBar value: (topItem / (items size)) asFloat.
]
 ifFalse: [
 sBar scrollDelta: 0.02 pageDelta: 0.2.
 sBar interval: 1.0
].
 self updateList

As you can see in the bold lines we are setting the ShapeButtons to call ListBox
methods upon events.

gotClicked: aNumber
 | n |
 n _ (aNumber // 14) + 1.
 (n > (items size))
 ifTrue: [n _ items size].
 self listIndex: (n + topItem – 1).
 clickAction ~= nil
 ifTrue: [clickAction value].

gotDoubleClicked
 doubleClickAction ~= nil
 ifTrue: [doubleClickAction value].

Here we have the method I was mentioning

cursorPoint y

cursorPoint returns a point value of the position of the cursor. As a row has 14
pixels height, we divide the y of the cursorPoint minus ListBox position, to find
the index of the row clicked.

I actually added the index property to the ShapeButton specifically for these
kind of situations, but I realized I haven’t covered cursorPoint, so there was a
change of plans.

6 – Cool, now what?

Nothing. I am not going to explain the whole ListBox. You have completed all
essential Morph properties, submorphs and almost all events. From now on,
everything depends on your design and implementation.

 41

7 – What is next for me to do?

You can still have a look at my “Farewell” and you can examine the Morph
reference.

After that, well, the guide is over and I am leaving your life.

8 – Methods of ListBox

methodsFor: ‘accessing’

addItem: aString
 items = nil
 ifTrue: [items _ OrderedCollection new].
 itemData = nil
 ifTrue: [itemData _ OrderedCollection new].
 items add: aString asString.
 itemData add: nil.
 self clearList.
 self showList.! !

clear
 items _ OrderedCollection new.
 itemData _ OrderedCollection new.
 self clearList

itemData
 ^ itemData

itemData: anOrderedCollection
 itemData _ anOrderedCollection

itemData: anObject at: anIndex
 anIndex <= items size
 ifTrue: [
 itemData at: anIndex put: anObject
]

itemDataAt: anIndex
 anIndex <= items size
 ifTrue: [
 ^ itemData at: anIndex
]

items
 ^items

items: anOrderedCollection
 items _ anOrderedCollection.
 itemData _ OrderedCollection new.
 (1 to: anOrderedCollection size)
 do: [:i |
 itemData add: nil
].

 42

 self clearList.
 self showList.! !

listIndex
 ^ listIndex

listIndex: aNumber
 lastListIndex _ listIndex.
 listIndex _ aNumber.
 selectedItem _ items at: aNumber.
 listIndex < topItem
 ifTrue:[
 sBar setValue: (listIndex * (sBar scrollDelta)) asFloat.
 ^ true
].
 listIndex > lastItem
 ifTrue:[
 sBar setValue: ((listIndex – maxVisibleItems + 1) * (sBar scrollDelta)) asFloat.
 ^ true
].
 self updateList

removeItem: anIndex
 items = nil
 ifTrue: [^ false].
 anIndex <= items size
 ifTrue:[
 items removeAt: anIndex.
 self removeItemDataAt: anIndex.
].
 self clearList.
 self showList

removeItemDataAt: anIndex
 itemData = nil
 ifTrue:[^ false].
 anIndex <= items size
 ifTrue: [
 ^ itemData removeAt: anIndex
]

selectedItem
 ^ selectedItem

selectedItem: aNumber
 ^ self listIndex: aNumber

methodsFor: ‘event handling’

handlesKeyboard: evt
 ^true

hasFocus
 ^ true

 43

�

eystroke: event
 | aChar |
 (self scrollByKeyboard: event) ifTrue: [^self].
 aChar _ event keyCharacter.
 ^ self keyPressed: aChar

scrollByKeyboard: event
 (listIndex = nil)
 ifTrue:[listIndex _ 0].
 event keyValue = 30
 ifTrue: [
 listIndex = 1
 ifTrue:[^true].
 self listIndex: listIndex – 1.
 ^ true].
 event keyValue = 31
 ifTrue: [
 listIndex = items size
 ifTrue:[^true].
 self listIndex: listIndex + 1.
 ^ true].
 ^ false

methodsFor: ‘events-processing’

clickAction: aBloc
 clickAction _ aBlock

doubleClickAction: aBlock
 | b |
 doubleClickAction _ aBlock.
 containers ~= nil
 ifTrue: [
 (1 to: containers size)
 do: [:i |
 b _ containers at: i.
 b doubleClickAction: aBlock.
].
]

gotClicked: aNumber
 | n |
 n _ (aNumber // 14) + 1.
 (n > (items size))
 ifTrue: [n _ items size].
 self listIndex: (n + topItem – 1).
 clickAction ~= nil
 ifTrue: [clickAction value]

gotDoubleClicked
 doubleClickAction ~= nil
 ifTrue: [doubleClickAction value]

 44

keyPressed: aChar
 | s |
 s _ listIndex.
 s = 0
 ifTrue:[s _ 1].
 (s to: items size)
 do: [:i |
 (aChar = (((items at: i) at: 1) asCharacter))
 ifTrue:[
 self listIndex: i.
 ^ true.
].
]

methodsFor: ‘initialization’

initialize
 super initialize.
 sBar _ ScrollBarForNonModels new.
 self addMorph: sBar.
 ListBox defaultProperties: self.
 maxVisibleItems _ (self height // 14).
 topItem _ 1.
 lastItem _ maxVisibleItems.
 self color: normalColor.
 containers _ OrderedCollection new! !

hideOrShowScrollBar
 ^true! !

scrollBarValue: scrollValue
 topItem _ (scrollValue * items size).
 topItem < 1
 ifTrue: [
 topItem _ 1.
 sBar value: sBar scrollDelta.
].
 lastItem _ topItem + maxVisibleItems – 1.
 (lastItem > (items size))
 ifTrue: [
 lastItem _ items size.
 topItem _ lastItem – maxVisibleItems + 1.
].
 self clearList.
 self showList

methodsFor: ‘visual properties’

extent: aPoint
 super extent: aPoint.
 maxVisibleItems _ (self height // 2) + 1.
 lastItem ~= nil
 ifTrue: [lastItem _ topItem + maxVisibleItems].

 45

 self clearList.
 self showList

height: aNumber
 super height: aNumber.
 maxVisibleItems _ (self height // 2) + 1.
 lastItem ~= nil
 ifTrue: [lastItem _ topItem + maxVisibleItems].
 self clearList.
 self showList

highlightColor
 ^highlightColor

highlightColor: aColor
 highlightColor _ aColor

normalColor
 ^normalColor

normalColor: aColor
 normalColor _ aColor

normalForeColor
 ^normalForeColor

normalForeColor: aColor
 normalForeColor _ aColor

selectedColor
 ^selectedColor

selectedColor: aColor
 selectedColor _ aColor

selectedForeColor
 ^selectedForeColor

selectedForeColor: aColor
 selectedForeColor _ aColor

width: aNumber
 super width: aNumber.
 self clearList.
 self showList

methodsFor: ‘private’

clearList
 | b |
 containers = nil
 ifTrue: [^ false].
 ((containers size) > 0)
 ifTrue: [

 46

 (1 to: containers size)
 do: [:i |
 b _ containers at: i.
 b delete.
].
].
 containers _ OrderedCollection new.! !

showList
 | b currentTop sD pD l|
 sBar top: self top.
 sBar left: self left + self width – sBar width.
 sBar height: self height.
 containers = nil
 ifTrue:[^ false].
 items = nil
 ifTrue:[^ false].
 topItem = nil
 ifTrue:[^ false].
 currentTop _ self top + 2.
 l _ lastItem.
 ((items size) < maxVisibleItems)
 ifTrue: [l _ items size].
 (topItem to: l)
 do: [:i |
 ((items at: i) ~= nil)
 ifTrue: [
 b _ ShapeButton new.
 b initialize.
 b shape: 1.
 b alignment: 1.
 b label: (items at: i).
 self addMorph: b.
 b normalColor: normalColor.
 b normalBorderColor: normalColor.
 b normalBorderWidth: 0.
 b normalForeColor: normalForeColor.
 b hoverColor: highlightColor.
 b hoverBorderColor: highlightColor.
 b hoverBorderWidth: 0.
 b hoverForeColor: normalForeColor.
 b height: 14.
 b width: self width – 2 – sBar width.
 b top: currentTop.
 b left: self left + 2.
 b index: i.
 b clickAction: [self gotClicked: (self cursorPoint y – self top)].
 b doubleClickAction: [self gotDoubleClicked].
 b doubleClickAction: doubleClickAction.
 b turnOnHoverEffect.
 b turnOffMouseDownEffect.
 currentTop _ currentTop + 14.
 containers add: b
].
].

 47

 ((items size) > maxVisibleItems)
 ifTrue: [
 sD _ (1 / (items size)) asFloat.
 pD _ ((items size – maxVisibleItems) / (items size)) asFloat.
 sBar scrollDelta: sD pageDelta: pD.
 sBar interval: (1 – pD) asFloat.
 sBar value: (topItem / (items size)) asFloat.
]
 ifFalse: [
 sBar scrollDelta: 0.02 pageDelta: 0.2.
 sBar interval: 1.0
].
 self updateList

updateList
 | b |
 listIndex = nil
 ifTrue: [^ false].
 listIndex > (maxVisibleItems + topItem – 1)
 ifTrue: [^ false].
 listIndex < topItem
 ifTrue: [^ false].
 (lastListIndex ~= nil
 and: [lastListIndex >= topItem
 and: [lastListIndex <= (lastItem)]])
 ifTrue: [b _ containers at: (lastListIndex – topItem + 1).
 b normalColor: normalColor.
 b normalBorderColor: normalColor.
 b normalForeColor: normalForeColor.
 b turnOnHoverEffect].
 b _ containers at: listIndex – topItem + 1.
 b normalColor: selectedColor.
 b normalBorderColor: selectedColor.
 b normalForeColor: selectedForeColor.
 b turnOffHoverEffect

class methodsFor: ‘instance creation’

defaultProperties: aListBox
 aListBox borderColor: Color lightGray.
 aListBox normalColor: Color white.
 aListBox highlightColor: Color paleBlue.
 aListBox selectedColor: Color blue.
 aListBox normalForeColor: Color black.
 aListBox selectedForeColor: Color white.
 aListBox extent: 100@200.

 48

Far ewel l

I hope you enjoyed this tutorial, as much as I enjoyed writing it. I think here I
must say that I enjoyed creating this document a lot.

What I really wish is that this document has been useful to you. Smalltalk
stems from the idea of having everything as an object. As all approaches, this
has advantages, as well as disadvantages.

Object oriented programming is a smart way to follow, but it brings problems
about usability along. If we have 1000 objects in the system and each object
introduces 10 new methods, it makes 11000 words for a user to handle, which
is almost as difficult as learning a foreign language. So many objects and
methods take too much time even to scan, no need to mention deciding what to
use.

Though this guide aims to demonstrate morphic classes and their uses, I tried
to show how to design and create objects as well. Evidentially every programmer
has an own style, but knowing other styles wouldn’t hurt.

Thank you for reading the tutorial and

Far ewel l .

 49

MORPH CLASS REFERENCE

 50

Object subclass Morph

Common instance methods in alphabetical order

addAllMorphs: aCollection
adds all morphs in the collection as submorphs.

addAllMorphs: aCollection after: anotherMorph
adds all morphs in the collection as submorphs after the existing submorph, keeping
the z-order.

addMorph: aMorph
adds a morph as a submorph to the z-order 1.

addMorph: newMorph after: aMorph
adds the new morph after the existing submorph aMorph regarding the z-order.

addMorph: newMorph behind: aMorph
adds the new morph after the existing submorph aMorph regarding the z-order.

addMorph: newMorph inFrontOf: aMorph
adds the new morph before the existing submorph aMorph regarding the z-order.

addMorphBack: aMorph
adds a morph as a submorph with lowest z-order.

addMorphCentered: aMorph
adds a morph as a submorph and centers it inside itself.

addMorphFront: aMorph
adds a morph as a submorph with highest z-order.

beTransparent
makes the morph transparent.

bottom: aNumber
moves the morph so that its bottom is at aNumber.

bottomLeft: aPoint
moves the morph so that its bottom left corner is on aPoint.

bottomRight: aPoint
moves the morph so that its bottom right corner is on aPoint.

center
centers the morph in the world that it belongs.

click: evt
default method does nothing, must be overridden to provide action. Becomes invoked
upon mouse click.

collapse
minimizes the morph.

 51

color: aColor
changes the color of a morph

comeToFront
sets the z-order of the morph to 1.

copy
returns a copy of the morph without its submorphs.

cursorPoint
returns a point indicating where the mouse cursor is.

delete
deletes the morph as a submorph

doubleClick: evt
default method does nothing, must be overridden to provide action. Becomes invoked
upon mouse double click.

dragEnabled
returns a boolean value indicating if submorphs can be added by drag&drop the the
morph.

dragEnabled: aBool
sets dragEnabled property.

duplicate
returns a clone of the morph.

extent: aPoint
resizes the Morph

goBehind
sets the morph’s z-order to the lowest.

handlesKeyboard: evt
default method returns false, must be overridden to provide action. Must return true if
keyboard events will be handled by the morph. Related methods: hasFocus, keyDown,
keyStroke, keyUp.

handlesMouseDown: evt
default method returns false, must be overridden to provide action. Must return true if
mouse down events will be handled by the morph. Related methods: click, doubleClick,
mouseDown, mouseUp.

handlesMouseOver: evt
default method returns false, must be overridden to provide action. Must return true if
mouse over events will be handled by the morph. Related methods: mouseEnter,
mouseLeave.

handlesMouseOverDragging: evt
default method returns false, must be overridden to provide action. Must return true if
drag events will be handled by the morph.

handlesMouseStillDown: evt

 52

default method returns false, must be overridden to provide action. Must return true if
mouse pressed events will be handled by the morph.

hasFocus
default method returns false, must be overridden to provide action. Must return true if
keyboard events will be handled by the morph. Related methods: handlesKeyboard,
keyDown, keyStroke, keyUp.

height: aNumber
resizes the morph so that it has the height aNumber

initialize
initializes the morph.

isStepping
returns whether the morph timer is on or off.

keyDown: anEvent
default method does nothing, must be overridden to provide action. Becomes invoked
upon a key is pressed. Related methods: handlesKeyboard, hasFocus.

keyStroke: anEvent
default method does nothing, must be overridden to provide action. Becomes invoked
upon a keystroke. Related methods: handlesKeyboard, hasFocus.

keyUp: anEvent
default method does nothing, must be overridden to provide action. Becomes invoked
upon a key is released. Related methods: handlesKeyboard, hasFocus.

left: aNumber
sets the left of the morph to the given number.

mouseDown: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse is pressed. Related methods: handlesMouseDown.

mouseEnter: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse enters morph’s bounds. Related methods: handlesMouseOver.

mouseEnterDragging: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse enters morph’s bounds dragging an object. Related methods:
handlesMouseOverDragging.

mouseLeave: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse leaves morph’s bounds. Related methods: handlesMouseOver.

mouseLeaveDragging: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse leaves morph’s bounds dragging an object. Related methods:
handlesMouseOverDragging.

mouseMove: evt

 53

default method does nothing, must be overridden to provide action. Becomes invoked
upon mouse movement.

mouseStillDown: evt
default method does nothing, must be overridden to provide action. Becomes invoked if
mouse is pressed and hold. Related methods: handlesMouseStillDown.

mouseUp: evt
default method does nothing, must be overridden to provide action. Becomes invoked
when mouse is released. Related methods: handlesMouseDown.

openInWindowLabeled: aString
opens morph in the window with the given label.

openInWorld
opens morph in the default world.

openInWorld: aWorld
opens the morph in a desired world.

owner
returns the owner of the morph.

position
returns a point indicating the top left corner of the morph.

position: aPoint
sets top left corner of the morph to a point.

removeAllMorphs
removes all submorphs of the morph.

right: aNumber
moves the morph so that its right is at a number.

showBalloon: msgText
shows balloon containing msgText.

startStepping
starts the timer. Related methods: step, stepAt, stepTime, stop.

step
default method does nothing, must be overridden to provide action. This method is
invoked periodically. Related methods: startStepping, stepAt, stepTime, stop.

stepAt: amillisecondValue
invoke the step method in amillisecondValue. Related methods: startStepping, step,
stepTime, stop.

stepTime
returns how frequent the step method will be invoked. Related methods: startStepping,
step, stepAt, stop.

stop

 54

stops timer. Related methods: startStepping, step, stepAt, stepTime.

submorphs
returns a copy of the submorphs collection.

top: aNumber
moves the morph so that its top is at aNumber.

topLeft: aPoint
moves the morph so that its top left corner is at aPoint.

topRight: aPoint
moves the morph so that its top right corner is at aPoint.

visible: aBoolean
sets whether the morph is visible or not.

width: aNumber
resizes the morph so that it has the width aNumber.

