Midterm Examination Solution
Com 1201 – Fall 2002 – Jeff Raab
Section 1 – Java Programming

[image: image1.jpg]

Carnivals and game shows often feature a “Wheel of Fortune”, a circular device that can be spun to randomly select a prize, or randomly select a number or symbol for wagering.
A simple wheel of this kind has a number of locations on it that each represent a prize, and a fixed pointer that indicates the randomly selected location. When the wheel is spun, the prize locations move around the fixed pointer, until the motion stops and a location is indicated by the pointer. A picture of this kind of wheel is shown at the right.

Assume the following Java class definition for such a wheel:

/** Models a carnival or lottery “wheel of fortune”. */

public class WheelOfFortune {

/** Array containing prize amounts for wheel locations. */

protected int[] prizes = null;

/**

 * Constructs a wheel with the given number

 * of prize locations.

 * @param size number of prize locations

 */

public WheelOfFortune(int size) {

prizes = new int[size];

for (int i = 0; i < prizes.length; i++)

prizes[i] = randomPrize();

}

/** Returns a prize amount, at random. */

protected int randomPrize() {

return (int)(Math.random() * 10000);

}

}

Write a public method named spin to be included in the definition of the WheelOfFortune class. This method must take a single parameter named clicks, of type int, and rotate the prize amounts stored in the array forward the number of locations indicated by the parameter.
For example, for a prize amount array containing { 1, 2, 3, 4 } in order, a call to spin(2) must result in a prize amount array containing { 3, 4, 1, 2 } in order. For a prize amount array containing { 0, 100, 10, 5000 } in order, a call to spin(3) must result in a prize amount array containing { 100, 10, 5000, 0 } in order.

Section 1 answer

This method must treat the array named prizes as a circular array, and rotate the values the given number of indices. As with any shift of values in an array, care must be taken not to overwrite a value unless that value has been temporarily stored in a variable for the term of the rotation. Here is a solution method for this problem:
/**

 * Rotates this wheel the given number of clicks.

 * @param clicks number of clicks to rotate this wheel

 */

public void spin(int clicks) {

int[] newPrizes = new int[prizes.length];

for (int i = 0; i < prizes.length; i++)

newPrizes[i + clicks % prizes.length] = prizes[i];

prizes = newPrizes;

}
It is possible to write a method to perform this task that does not create a new array, but it is much easier to do so. A less efficient but very readable alternative would be to perform a series of single rotations:
/**

 * Rotates this wheel the given number of clicks.

 * @param clicks number of clicks to rotate this wheel

 */

public void spin(int clicks) {

int temp = 0;

for (int i = 0; i < clicks; i++) {

temp = prizes[prizes.length - 1];

for (int j = prizes.length - 1; j > 0; j++) {

prizes[j] = prizes[j - 1];

}

prizes[0] = temp;

}

}
Section 2 – Implementing a Java interface

The Deque ADT describes a data structure used to store and retrieve Objects. Assume the following Java interface specifying the required operations for the ADT:

/** Interface describing the operations in the Deque ADT. */

public interface DequeADT {

/**

 * Inserts the given element at the first position

 * in this deque.

 * @param element object to be added

 */
public void insertFirst(Object element);

/**

 * Inserts the given element at the last position

 * in this deque.

 * @param element object to be added

 */
public void insertLast(Object element);
/**

 * Removes the object at the first position

 * in this deque, and returns it.

 */

public Object removeFirst() throws RuntimeException;

/**

 * Removes the object at the last position

 * in this deque, and returns it.

 */

public Object removeLast() throws RuntimeException;

/** Returns the number of objects in this deque. */

public int size();

/** Returns whether or not this deque is empty. */

public boolean isEmpty();
}
On the following page, write a complete Java class named VectorDeque that implements this ADT using a Java Vector object to do the work of the methods required by the ADT. The last pages of this exam summarize the documentation for the Vector class, for your reference.

Your class must include all necessary code. A perfect score will be given for a well documented class definition that could be typed into a Java file and compiled without error, and that correctly implements the above ADT. Partial credit will be given for incomplete or incorrect code.

Your code must be legible to be graded!
Section 2 answer
This problem requires a similar class to the VectorStack class from the Stack Pictures homework. Here is my version of this class:

import java.util.Vector;

/** Deque implementation using a Java Vector. */

public class VectorDeque implements DequeADT {

/** Vector used to store elements. */

protected Vector elements = new Vector();

/** Constructs a new deque. */

public VectorDeque() {}

/**

 * Inserts the given element at the first position

 * in this deque.

 * @param element object to be added

 */
public void insertFirst(Object element) {

elements.insertElementAt(0, element);
}

/**

 * Inserts the given element at the last position

 * in this deque.

 * @param element object to be added

 */
public void insertLast(Object element) {

elements.add(element);

}

/**

 * Removes the object at the first position

 * in this deque, and returns it.

 */

public Object removeFirst() throws RuntimeException {

if (isEmpty())

throw new RuntimeException(“It’s empty.”);

return elements.remove(0);

}
/**

 * Removes the object at the last position

 * in this deque, and returns it.

 */

public Object removeLast() throws RuntimeException {

if (isEmpty())

throw new RuntimeException(“It’s empty.”);

return elements.remove(size() - 1);

}

/** Returns the number of objects in this deque. */

public int size() {

return elements.size();

}

/** Returns whether or not this deque is empty. */

public boolean isEmpty() {

return elements.isEmpty();

}
}
Section 3 – Analysis

Analyze each code segment and write the number of * characters it prints. Provide an asymptotic analysis of the number of * characters printed, using Big-Oh or Big-Theta as appropriate. In case you are unsure, the following code prints a single * character:

System.out.println(“*”);

The following code prints three * characters:

System.out.println(“***”);

Be sure to completely read each code segment before performing your analysis. If the number of * that are printed, actually or asymptotically, depends on a variable you should use that variable in your answers.
1.
System.out.println(“****”);
for (int i = 0; i < n; i++)

System.out.println(“**”);

System.out.println(“***”);

The number of * characters printed is 2n + 7.

Asymptotically, the number of * characters printed is O(n).

2.
System.out.println(“**”);
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.println(“*”);

}

}

System.out.println(“**”);

The number of * characters printed is n2 + 4.

Asymptotically, the number of * characters printed is O(n2).

Section 3 – Analysis

Analyze each code segment and write the number of * characters it prints. Provide an asymptotic analysis of the number of * characters printed, using Big-Oh or Big-Theta as appropriate.

3.
System.out.println(“*”);
int pow = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2;

for (int i = 0; i < pow; i++)

System.out.println(“*”);

System.out.println(“***”);

The number of * characters printed is 1024 + 4.

Asymptotically, the number of * characters printed is O(1).

4.
System.out.println(“**”);
for (int i = 0; i < n; i++) {

for (int j = i; j < m; j++) {

System.out.println(“***”);

}

}

System.out.println(“****”);

The number of * characters printed is
n <= m
n(n + 1) / 2 + n(m - n) + 6

n > m
m(m + 1) / 2 + 6

Asymptotically, the number of * characters printed is O(mn).

Section 4 – Linear structures

For each situation below, circle the ADT you would choose for the specified task, and circle the implementation of that ADT that would provide the most efficient running time for each of the operations listed in the problem. Please use asymptotic analysis for the running time, and use Big‑Oh and Big‑Theta as appropriate.

1.
You are employed by a software company designing an application for use in food markets. Your job is to implement the data structure used to store the price of each item scanned as a customer checks out. The structure must be able to add a price to the structure, get the last price that was added, and remove the last price that was added (in the case where the item scanned incorrectly).

	Stack ADT

Your choice of linear ADT would be: Queue ADT
	Linked List

Your choice of implementation would be:
Dynamic Array

	Operation
	Method in ADT used to implement
	Running time

	Add price to structure
	push
	O(1)

	Get last price added to structure
	top
	O(1)

	Remove last price that was added
	pop
	O(1)

2.
You are employed by a software company designing an application for use in customer service telephone call centers. Your job is to implement the data structure used to store the callers on hold. The structure must be able to add a caller to the structure, count the callers on hold (to estimate wait time), and remove the caller that has been waiting the longest when a representative is ready.
	Queue ADT

Your choice of linear ADT would be:
Stack ADT

	Linked List

Your choice of implementation would be:
 Dynamic Array

	Operation
	Method in ADT used to implement
	Running time

	Add caller to structure
	enqueue
	O(1)

	Count callers on hold
	size
	O(1)

	Remove next caller to serve
	dequeue
	O(1)

java.util
Class Vector
	Constructor Summary

	Vector()
 Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.
	

	Vector(Collection c)
 Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.
	

	Vector(int initialCapacity)
 Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.
	

	Vector(int initialCapacity, int capacityIncrement)
 Constructs an empty vector with the specified initial capacity and capacity increment.
	

	Method Summary

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this Vector.

	 boolean
	add(Object o)
 Appends the specified element to the end of this Vector.

	 void
	addElement(Object obj)
 Adds the specified component to the end of this vector, increasing its size by one.

	 int
	capacity()
 Returns the current capacity of this vector.

	 void
	clear()
 Removes all of the elements from this Vector.

	 boolean
	contains(Object elem)
 Tests if the specified object is a component in this vector.

	 void
	copyInto(Object[] anArray)
 Copies the components of this vector into the specified array.

	 Object
	elementAt(int index)
 Returns the component at the specified index.

	 void
	ensureCapacity(int minCapacity)
 Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.

	 boolean
	equals(Object o)
 Compares the specified Object with this Vector for equality.

	 Object
	firstElement()
 Returns the first component (the item at index 0) of this vector.

	 Object
	get(int index)
 Returns the element at the specified position in this Vector.

	 int
	indexOf(Object elem)
 Searches for the first occurence of the given argument, testing for equality using the equals method.

	 int
	indexOf(Object elem, int index)
 Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.

	 void
	insertElementAt(Object obj, int index)
 Inserts the specified object as a component in this vector at the specified index.

	 boolean
	isEmpty()
 Tests if this vector has no components.

	 Object
	lastElement()
 Returns the last component of the vector.

	 int
	lastIndexOf(Object elem)
 Returns the index of the last occurrence of the specified object in this vector.

	 int
	lastIndexOf(Object elem, int index)
 Searches backwards for the specified object, starting from the specified index, and returns an index to it.

	 Object
	remove(int index)
 Removes the element at the specified position in this Vector.

	 boolean
	remove(Object o)
 Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged.

	 void
	removeAllElements()
 Removes all components from this vector and sets its size to zero.

	 boolean
	removeElement(Object obj)
 Removes the first (lowest-indexed) occurrence of the argument from this vector.

	 void
	removeElementAt(int index)
 Deletes the component at the specified index.

	protected void
	removeRange(int fromIndex, int toIndex)
 Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive.

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this Vector with the specified element.

	 void
	setElementAt(Object obj, int index)
 Sets the component at the specified index of this vector to be the specified object.

	 void
	setSize(int newSize)
 Sets the size of this vector.

	 int
	size()
 Returns the number of components in this vector.

	 Object[]
	toArray()
 Returns an array containing all of the elements in this Vector in the correct order.

	 Object[]
	toArray(Object[] a)
 Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the specified array.

	 void
	trimToSize()
 Trims the capacity of this vector to be the vector's current size.

