
 Problems On Classes in Java Page 1

Problems On Classes in Java

In this problem set, we will present a variety of simple classes. In these examples, the primary
purpose of the class is to collect data elements that are related to one another in a single object.
In such examples, the behavior provided beyond set and get functions is quite limited. We will
call such classes data buckets because their primary purpose is to collect data.

Problem 1: Person
In this problem, we will explore the building a PersonPersonPersonPerson class that collects information about a
person. Such information might be the starting point for an online address-telephone list or
might be a component in a database system.
Let us first explore the data in the PersonPersonPersonPerson class. A simple approach is to have one field, namenamenamename,
that contains all parts of a person’s name: first name, middle name, and family name.
However, this design implies that when you need an individual part of the name then you
must somehow extract that part from namenamenamename. A better design is to have three fields, firstNamefirstNamefirstNamefirstName,
middleNamemiddleNamemiddleNamemiddleName, and familyNamefamilyNamefamilyNamefamilyName, to hold the information as separate data from the start.
The next question is whether the data should be publicpublicpublicpublic or protectedprotectedprotectedprotected. It may be argued that
since the PersonPersonPersonPerson class is a data bucket why not make access as simple as possible by making
the data fields publicpublicpublicpublic? This design might be represented by:

 public class Person { public class Person { public class Person { public class Person {

 public String familyName = ""; public String familyName = ""; public String familyName = ""; public String familyName = "";

 public String firstName = ""; public String firstName = ""; public String firstName = ""; public String firstName = "";

 public String middleName = ""; public String middleName = ""; public String middleName = ""; public String middleName = "";

 } } } }

Since this class does not have an explicit constructor, Java will automatically supply a default
constructor that leaves the member data fields with the initializations given above. Thus, if we
now introduce a PersonPersonPersonPerson object

 Person X = new Person(); Person X = new Person(); Person X = new Person(); Person X = new Person();

then we may directly access the three fields as X.familyNameX.familyNameX.familyNameX.familyName, X.firstNameX.firstNameX.firstNameX.firstName, and X.middleNameX.middleNameX.middleNameX.middleName
and these fields initially contain the empty StringStringStringString: """""""". Initializing with the empty StringStringStringString is
much more convenient than initializing with nullnullnullnull since making tests for nullnullnullnull is a pain. This
observation reveals, however, the fatal flaw in permitting the fields to be publicpublicpublicpublic. If the fields
are publicpublicpublicpublic, there is nothing to prevent another programmer from writing code that says, for
example:

 X.familyName = null; X.familyName = null; X.familyName = null; X.familyName = null;

 Problems On Classes in Java Page 2

Thus, even if we intend the class to maintain its data as non-nullnullnullnull StringStringStringString objects, if the data is
publicpublicpublicpublic we have no control over what another programmer will do.
This means that it is a better design to make the data protectedprotectedprotectedprotected and to provide access via set
and get functions. Let us illustrate this with the familyNamefamilyNamefamilyNamefamilyName field:

 protected String familyName = ""; protected String familyName = ""; protected String familyName = ""; protected String familyName = "";

 // later on in the class definition ... // later on in the class definition ... // later on in the class definition ... // later on in the class definition ...

 public void setFamilyName(String name) { public void setFamilyName(String name) { public void setFamilyName(String name) { public void setFamilyName(String name) {
 if (name == null) if (name == null) if (name == null) if (name == null)
 familyName = ""; familyName = ""; familyName = ""; familyName = "";
 else else else else
 fam fam fam familyName = name;ilyName = name;ilyName = name;ilyName = name;
 } } } }

 public String getFamilyName() { return familyName; } public String getFamilyName() { return familyName; } public String getFamilyName() { return familyName; } public String getFamilyName() { return familyName; }

This coding means that setFamilyNamesetFamilyNamesetFamilyNamesetFamilyName prevents the assignment of a nullnullnullnull value to the internal
familyNamefamilyNamefamilyNamefamilyName data field of a PersonPersonPersonPerson object.
The next question we can ask is whether or not we should have additional fields in the PersonPersonPersonPerson
class. Several possibilities come to mind:
(1) A field, titletitletitletitle, to hold honorific information such as Mr.Mr.Mr.Mr., Ms.Ms.Ms.Ms., MissMissMissMiss, Mrs.Mrs.Mrs.Mrs., Dr.Dr.Dr.Dr., Prof.Prof.Prof.Prof., etc.
(2) A field, extraextraextraextra, to hold extra tags such as Sr.Sr.Sr.Sr., Jr.Jr.Jr.Jr., IIIIIIIIIIII, etc.
(3) A field, nickNamenickNamenickNamenickName, to hold a person’s nickname.
(4) A field, identifieridentifieridentifieridentifier, to hold some identifier data to distinguish people with the same name
information.
We explicitly do not wish to attach address information since that will be dealt with using
separate classes below.
We leave it to you to decide exactly how you wish to build the data in the class, that is, what
fields to include and what fields to exclude. Let us now consider the question of constructors.
Usually, it is a good idea to have a default constructor so that an object can be constructed with
no immediate information thus leaving modification of its data until later. It is also a good
idea to have a maximal constructor that permits all data fields to be set at the time of construction.
What about constructors that fall in between these extremes? We recommend at least:

 public Person(String familyName) { ... } public Person(String familyName) { ... } public Person(String familyName) { ... } public Person(String familyName) { ... }

 public Person(String familyName, String firstName) { ... } public Person(String familyName, String firstName) { ... } public Person(String familyName, String firstName) { ... } public Person(String familyName, String firstName) { ... }

 public Person(String familyName, String firstName, public Person(String familyName, String firstName, public Person(String familyName, String firstName, public Person(String familyName, String firstName, String middleName) { ... } String middleName) { ... } String middleName) { ... } String middleName) { ... }

Under no circumstances should any of the constructors do direct assignment to the data fields. The
appropriate set functions should be called to avoid nullnullnullnull assignments.

 Problems On Classes in Java Page 3

Finally, we come to member functions beyond constructors and set and get functions. For such
a simple class built with internal StringStringStringString data, the only obvious functions are those that
combine the StringStringStringString’s in various ways. Here are some that come to mind.
The Java toString()toString()toString()toString() function should be implemented to combine all of the internal data into one
big StringStringStringString. For this, we recommend traditional comma-separated-format:

 familyName, firstName, middleName, title, extra, nickName, identifier familyName, firstName, middleName, title, extra, nickName, identifier familyName, firstName, middleName, title, extra, nickName, identifier familyName, firstName, middleName, title, extra, nickName, identifier

Of course, what you combine depends on your choice of data fields. The definition of the
toString()toString()toString()toString() function should look like:

 public String toString() { public String toString() { public String toString() { public String toString() {
 return familyName + ", " + firstName + ", " + ... ; return familyName + ", " + firstName + ", " + ... ; return familyName + ", " + firstName + ", " + ... ; return familyName + ", " + firstName + ", " + ... ;
 } } } }

It will be useful to have member functions that combine only parts of the data into larger
String objects. For example:

 firstName familyName firstName familyName firstName familyName firstName familyName
 firstName middleName familyName extra firstName middleName familyName extra firstName middleName familyName extra firstName middleName familyName extra
 title firstName familyName title firstName familyName title firstName familyName title firstName familyName
 title firstName middleName familyName extra title firstName middleName familyName extra title firstName middleName familyName extra title firstName middleName familyName extra

Exactly how you name these functions is up to you. One particular problem, however,
deserves a general solution, namely, what to do about the blank spacing between StringStringStringString’s if one of
the two StringStringStringString’s is empty. In that case, we want to omit the blank as well. You will go crazy if
you try to implement this requirement inline in each case. Instead, we recommend the
definition of a staticstaticstaticstatic function that handles this issue once and for all:

 /** /** /** /**
 * Join will return a blank separated String by combining the two given input * Join will return a blank separated String by combining the two given input * Join will return a blank separated String by combining the two given input * Join will return a blank separated String by combining the two given input
 * String objects if both are non * String objects if both are non * String objects if both are non * String objects if both are non----null and nonnull and nonnull and nonnull and non----empty.empty.empty.empty.
 * * * *
 * Otherwise, join will return one of the two input String’s as appropriate. * Otherwise, join will return one of the two input String’s as appropriate. * Otherwise, join will return one of the two input String’s as appropriate. * Otherwise, join will return one of the two input String’s as appropriate.
 */ */ */ */
 public static String join(String s, String t) { public static String join(String s, String t) { public static String join(String s, String t) { public static String join(String s, String t) {

 if ((s == null) || (s.length() == 0)) if ((s == null) || (s.length() == 0)) if ((s == null) || (s.length() == 0)) if ((s == null) || (s.length() == 0))
 return t; return t; return t; return t;

 if ((t == null) || (t.length() == if ((t == null) || (t.length() == if ((t == null) || (t.length() == if ((t == null) || (t.length() == 0))0))0))0))
 return s; return s; return s; return s;

 return s + " " + t; return s + " " + t; return s + " " + t; return s + " " + t;
 } } } }

Notice that this staticstaticstaticstatic function does test for nullnullnullnull. The reason is that you might want to use it
in other programs and might even want to place it in a Java library. In such situations, you
want the function definition to be as robust as possible.

 Problems On Classes in Java Page 4

Problem 2: StreetAddress
Define a Java class StreetAddressStreetAddressStreetAddressStreetAddress that combines the information needed to specify a street
postal location, that is, a street number, a street, and an apartment or office number within the
building at that location. Define member data, constructors, set and get functions, and StringStringStringString
output functions as appropriate following the model of the PersonPersonPersonPerson class.

Problem 3: Town
Define a Java class TownTownTownTown that combines the information needed to specify a town postal
location, that is, a town, state or province, country, and postal equivalent of the US zipcode.
Define member data, constructors, set and get functions, and StringStringStringString output functions as
appropriate following the model of the PersonPersonPersonPerson class.

Problem 4: FullAddress
Define a Java class FullAddressFullAddressFullAddressFullAddress that combines one object of class StreetAddressStreetAddressStreetAddressStreetAddress and one object
of class TownTownTownTown to define the full information required to specify a complete address. Define
member data, constructors, set and get functions, and StringStringStringString output functions as appropriate
following the model of the PersonPersonPersonPerson class.

Problem 5: TelephoneNumber
Define a Java class TelephoneNumberTelephoneNumberTelephoneNumberTelephoneNumber that combines the information needed to specify a
telephone number. Be concerned about differences in telephone numbers for different
countries and decide how you will handle this in the member data definitions and set
functions. What should be the defaults for the member data? Should this class contain
information about whether the telephone number will connect to a person via wires, to a
person via a cell phone, to a fax machine, or to a computer modem bank or is it better not to
specify such information? Define constructors, set and get functions, and StringStringStringString output
functions as appropriate following the model of the PersonPersonPersonPerson class.

Problem 6: PersonInfo
Define a Java class PersonInfoPersonInfoPersonInfoPersonInfo that combines the information needed to specify a person’s
name, zero or more full addresses at which the person may live or work, and zero or more
telephone numbers. Define member data, constructors, set and get functions, and StringStringStringString
output functions as appropriate following the model of the PersonPersonPersonPerson class.
Note: This final problem is significantly harder than the previous problems because of the
requirement zero or more for the full addresses and telephone numbers. If you wish, you may
simplify the problem to require exactly one full address and telephone number.

