Mars Image Enhancement Lab

November 1999

Introduction

The main goals of this project are to practice using arrays, to learn how to read a binary file, and how to change the perceived type of a variable by casting. In addition, by working with image data, you will learn two simple techniques for enhancement of images defined by pixel shades.

In this lab you will read images data files of NASA images of the planet Mars, display the images as received from the Viking Explorer, and by manipulating this data in two different ways generate enhanced images.

Goals

•
learn how an image can be represented by pixel shade data

•
use variables and values of the type byte (unsigned char)
•
learn to read a binary file

•
learn how to recast a variable as a different type

•
learn two methods for image enhancement:

linear scaling and histogram equalization

Tutorial.

Images.

The data in the files mg20s002, mg20s007, etc. came from a NASA jukebox of planetary images. Each file starts with several lines of text (a label) that identifies the image - the location on Mars, the resolution (how large an area is represented by one pixel), what spacecraft took the image, and the information about the size of the image data (number of lines and the number of pixels per line). After the label is histogram data - specifying how many pixels there are of each shade (gray shade, just like the color shades, has values in the range from 0 to 255). The last part of the file contains the image data: each pixel is represented as one byte.

Pixel shades and casting.

Each pixel shade is represented as one byte. We read the data as characters but before we use them to specify the shade, we need to tell the computer to think of the one byte as unsigned integer value. The data type byte defined in Graphics.h as

typedef unsigned char byte ;

forces this unsigned representation of the meaning of a one byte. To convert the one character c to a short p, we use casting as follows:

char c;

short p = (byte) c;
Otherwise, the computer would interpret all bytes that start with the first bit == 1 as negative numbers between -128 and -1 and convert to a short accordingly.

To color one pixel in the image we can use one of the following two function calls:

SetPixel(col, row, p);

or

SetColorPixel(col, row, r, g, b);
Image dimensions.

All images in this collection have the same size: 320 lines of 306 pixels in each line. In addition, the labels are stored in the first 12 lines, followed by 4 lines for the histogram data that we will ignore. We will use four enum constants: HeadLines, LabelLines, DataLines, and LineBytes to control the sizes of different loops.

Reading binary file.

To read a whole line of data at once, we will open the file in binary mode. To open the file for reading in binary mode, use binaryread instead of textread in the OpenFile function call. In this mode we can use the function read that accepts two arguments: an address of the memory space into which the data should be saved and a short value indicating the number of bytes to read. The function then copies the required bytes unchanged into the designated memory location. The following statement will read one line of data from a file identified by ifstream variable InFile into the location specified by array variable L:

char L[LineBytes];
InFile.read(L, LineBytes);

Image enhancement.

A 'black and white' image is represented by pixels of different shade of gray. By choosing SetForeColor (x, x, x) with values of x ranging from 0 to 255 we can represent 256 different shades of gray. A function call

SetColorPixel(col, row, GrayShade(p));

paints one pixel of the desired gray shade at the specified location in the drawing window. In pictures of low quality the range of the shades is often much smaller than 256. For example, in the images from Mars most of the shades are in the range between about 70 and 170, leaving more than half of the shades unused. Image enhancement methods take advantage of this deficiency.

Linear scaling.

The first method uses linear scaling to modify the shade of each pixel. It starts with computing the minimum and maximum of the existing shades. It then scales each shade so that the range of shades is expanded to 256 values. The scaling formula is:

newshade = (oldshade - min) * (255 / (max - min));
That means that in our example (the range between 70 and 170), oldshade=70 would be represented as newshade=0, oldshade=170 would be represented as 255, and oldshade=100 would be represented as (100 - 70) * (255 / (170 - 70)) = 30 * 2.55 = 76.5, or newshade=76.

We compute a mapping array with 256 elements that will give us the newshade for every value of oldshade. So, we need to set Map[oldshade] = newshade;
Histogram equalization.

The second method is called histogram equalization. Histogram equalization is simply a transformation of the original distribution of pixels such that the resulting histogram is more evenly distributed from black to white. We start by computing the distribution of the pixel shades (a frequency array or a histogram H). Histogram is a simple count of the number of occurrences of each pixel shade. (For example a histogram of rolling a die 100 times may tell us that we rolled 1 15 times, 2 18 times, 3 17 times, 4 12 times, 5 15 times and 6 13 times.)

We then compute the shade of each pixel initially at gray level i a scale factor si computed as:

si = (1/h) * sum(h0, h1, h2, ..., hi)
 where h is the total number of pixels and hi is the number of pixels at gray level i (i.e. the histogram data).

We first compute the sum of all histogram values, the compute the map.

The mapping will then take Map[oldshade = i] = newshade = 255 * si
References:

The idea for this lab came from the book by Robert S. Wolff and Larry Yaeger, Visualization of Natural Phenomena, Springer Verlag 1993 (TELOS Series)

Thanks also to Peter Ford from MIT who helped us locate the original image data file.

The Viking Orbiter and other planetary data files can be found at
"ftp://pdsimage.wr.usgs.gov/cdroms/".

We suggest using the files in vo_2002 that start with "mg". For example:

"ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/mg25sxxx/mg25s022.img".

These files are relatively small, about 100K and contain images that are approximately 300 by 300 pixels. See

"ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/volinfo.txt"

for a description of the file format.

The Tasks of this Laboratory

Part 1: Read Mars image data file and display the image.

In the first part of this lab you will read an image file, display the label in the text window, and display the image in the drawing window.

In the main, you need to define the appropriate file name and file stream variables, open the file, call ProcessData function, and finally close the file. Use a while loop so that you can process several images during one run of the program. The code for opening a drawing window sized specifically for this problem (and its companion text window) is already given.

ProcessData function in the first part of the lab does not do anything useful - it only calls the function SimpleImage to read and display the data. Later, it will call three different image functions and handle resetting the image file so it can be read again from the beginning and perform some auxiliary functions.

SimpleImage function reads one line of data from the image file and processes it, depending on whether it is the label or the pixel shade data. To read one line from the file, we need to define an array variable of LineBytes (= 306) characters. A suitable type ImageLine has been defined after the headers.

The function starts with a loop where a label line is read and then one character at a time, the data is displayed in the text window. You do not need to worry about endl - the label data will have their own end of line data within the file itself. So, this should be a loop within a loop (outside loop reading the lines, inside loop displaying the characters in each line).

Next there should be a short loop to read (and ignore) the four lines of histogram data.

The image processing loop comes next. it reads on line of the data follows with a simple loop displaying each pixel L[x]. It first converts L[x] to short p (see above), then calls calling SetPixel(col, row, p);

Finally, add the code that will find the minimum and maximum value of the gray shade in the whole image. The only problem is that you should ignore the pixels with the gray shade = 0, because they represent a border due to the curvature of the planet. So, you search for the minimum among all grayshade values that are > 0.

Save the program and make a copy of the whole project, including the .cpp file before you continue with Part 2.

Part 2: Process data and generate enhanced images.

This part consists of the following tasks:

•
implement function ComputeScaledMap that will define the mapping of the shades for each grayshade value as explained in the tutorial

•
implement function BetterImage that replaces the original grayshade by the one defined by the map

•
add to the function BetterImage the code needed to record the histogram of the grayshades used in the image

•
implement a function ComputeHistoMap that will processes the histogram data and generates the mapping of the shades for each grayshade value as explained in the tutorial

•
implement HistoImage function to display an image enhanced by using histogram equalization method

•
implement function ShowHistogram that displays the histogram as a simple stick chart

•
implement fucntion ColorizedImage that replaces the shade we get from the histogram map by some other colors computed from this value

Function ComputeScaledMap
This function receives three arguments: a Map, which is an array of 256 short, and two int values, min and max. It computes the scaled map as described in the tutorial.

Function BetterImage
This function is nearly identical to SimpleImage and you should start by simply copying all code from the first version of SimpleImage (before you added the code for minimum and maximum. The only difference is that you will replace the pixel grayshade value by the value given in the Map.

Add to the function BetterImage
You need to start by modifying the function ProcessData. Here you have to define the array that will hold the histogram data and initialize its values to zero. Inside the function BetterImage every time you find a new pixel shade (and before you map it into its scaled value) increment the appropriate item in the histogram.

Part 3: For extra credit as an individual project.

Implement a function ComputeHistoMap
This function receives two arguments: the histogram array and the Map array. It starts by computing the sum of all histogram elements h to get the total number of (non-zero) pixels used in the image. It then computes the mapping using the formula:

si = 255 * (1/h) * sum(h0, h1, h2, ..., hi)
 where h is the total number of pixels and hi is the number of pixels at gray level i (i.e. the histogram data). Make h a double: it will assure that the following computation will not use integer arithmetic. You will need to look at the histogram data item twice - the first time just to compute the total sum, the second time computing the mapping.

Implement HistoImage function

This functions are almost identical to BetterImage. All the hard work has been done in the function ComputeHistoMap and we are just reaping the rewards.

Implement function ShowHistogram
Make this very simple. There are 256 values, make each to be represented by one vertical line starting at the bottom of the drawing window. Scale the height by dividing the histogram value by 30 - it will work fine - we only want to see the shape of the histogram. Add a call to display the histogram (in the function ProcessData after you have seen all three images.

Implement fucntion ColorizedImage

This functions are almost identical to HistoImage. Once you determine the grayshade from the histogram map, use the function

SetColorPixel(col, row, r, g, b);
to set the pixel color. Choose the pixel grayshade value to represent red, and compute green and blue from this value using some formula you choose. Experiment, till you select a coloring you like.

Part 1
Due Date:
Monday, December 6, 1999

Hand In:
printout of the source code and a diskette with the project

Part 2:
Due Date:
Wednesday, December 8, 1999

Hand In:
printout of the source code and a diskette with the project

Part 3:
Due Date:
Thursday, December 9, 1999

Hand In:
printout of the source code and a diskette with the project

Image Enhancement Lab Page 6

