
Swimming Fish Laboratory

October 1996

Overview

In this laboratory, you will simulate the search of a large fish for food (a school of small fish) in an underwater cave.

[image: image1.png]The Fish

The Food

To simplify the problem, the large fish will initially be at the left hand side of the cave and the food at the right. The cave is designed so that the large fish only needs to move up, down, or to the right. The large fish never needs to backtrack to the left due to a dead end. A typical randomly generated cave is shown below:

[image: image2.wmf]
The next snap shot shows the path taken by the large fish until it has located and eaten the school of small fish:

[image: image3.wmf]
Educational Goals

The essence of abstraction is to make the crucial concepts clear at the highest level and to hide the technical details at lower levels. In this laboratory, you will learn to think with abstractions. You will design the search algorithm for the large fish to find the school of small fish. Your algorithm will use only three routines together with simple loops and branch statements:

void MoveFish(short direction);

// move large fish in this direction

bool FreeToMove(short direction);
// is large fish free to move in this

// direction?

bool FoundFood();

// has large fish found small fish?

In the process, you will learn the intellectual advantages of working with a few simple abstractions rather than with lots of messy details.

Laboratory Activities

To get an idea of how the search for food proceeds, run the SwimFishSolution . You will see that this solution provides two methods:

FastSearch:
Move as quickly as possible to the right in search of the school of small fish

CompleteSearch:
Check out every cell in the current column before moving right to check the next column.

In SwimFish.cp , both of the routines FastSearch() and CompleteSearch() have been left empty. In this laboratory, you should design and program the FastSearch() algorithm and, if time permits, the CompleteSearch() algorithm for an extra 2 points.

Let us focus on FastSearch() for the moment. The heart of the body of this routine must be a loop that continues until the food is found. How can we tell when this happens? With the routine FoundFood() of course. Since FoundFood() is true when the food is found, that is, when the loop should stop, we must negate this condition if we want to say when the loop should continue to run. Thus the main loop should have the form:

while (!FoundFood()) {

// ! means not

main

// loop while: food is not found

loop

// exit when: food is found

body

}

In the body of the loop, you need to move the fish or change your direction of motion as you search for the food. Before you move the fish in any direction, you must test using FreeToMove(direction) whether the fish can move in that direction. If you fail to test, the fish may bore through solid rock (which is considered an error).

If a fish is free to move in a certain direction, then you may move the fish with MoveFish(direction) . The fundamental design question is: How should you decide in what direction to move?

The available directions are Up, Down, Left, Right . To make this assignment simpler, we guarantee that the school of small fish is in the rightmost part of the cave and that it will never be necessary for the large fish to “back up” and go to the left. Beyond this simplification, you need to figure out what to do.

Because we guarantee that the school of small fish is in the rightmost part of the cave, you can always go right if that is possible. If that is not possible, then you must decide whether to go up or down. To illustrate that this may be tricky, let us present a solution with a bug:

// buggy solution to FastSearch()

while (!FoundFood()) {

if (FreeToMove(Right))

// move Right if you can

MoveFish(Right);

else

if (FreeToMove(Up))

// or move Up if you can

MoveFish(Up);

else

MoveFish(Down);

// or move Down if you must

}

The problem with this solution is that if the fish cannot move right, it will move up until the top of the column is reached. Then it will move down once. At this point it will move up again! An infinite oscillation will begin (the famous “infinite loop”).

To resolve the dilemma of the infinite loop, you will need one or more auxiliary variables to help remember where the large fish has been or has already searched. You need to control the actions in the loop body based both on FreeToMove and on the contents of your variables.

Designing the auxiliary variables and the branch structures (if or switch) within the main loop is the heart of what you must do in this lab. The actual code is not long. Getting it right is the issue.

One more hint: It is possible and recommended that you do not use sub-loops within the main loop. The reason is that testing (!FoundFood()) will not occur as frequently as is desirable. You can actually generate a better solution if your loop body does at most one fish move per cycle together with some changes of your variables as needed.

In designing your code, do not use information from the lower level classes and objects that form the foundation of the code. This will not help and will prevent you from learning to work fluently with abstractions.

CompleteSearch

As we mentioned, if time permits, program the CompleteSearch() algorithm also. In this case, you must visit every cell in a column before moving to the right. This turns the strategy of moving right whenever possible completely around. You will have to be more careful to make sure that you visit all cells in a column and that you do not get stuck in an infinite up-and-down loop. Here is an illustration of what the situation and the solution will look like in this case:

Original situation:

[image: image4.wmf]
Complete solution:

[image: image5.wmf]
Additional Comments

Many simple algorithms use straightforward loops and easy decisions. This exercise is an interesting example of a problem where you cannot predict when a change in direction may be necessary. If you are too simpleminded, you may change too often and simply oscillate or may fail to change when needed and crash through walls.

An interesting aspect of this exercise is that you obtain a global solution - food is found - simply using local information - what directions are open to the fish at the current position. In computing, it is pleasing when you can find an efficient global solution using only local information.

The fact that local information is sufficient for the solution makes it easy to set up the abstractions FreeToMove, FoodFound, and MoveFish which help to hide the internal data structures and thereby permit a clean program design. When efficiency requires examination of global data structures, then more effort is required to write a quality program.

SwimmingFish Lab Report Page 5

©1996, College of Computer Science, Northeastern University, Boston MA 02115

